
Core10100 v5.1
Handbook

Table of Contents

Introduction .. 5
Supported Device Families .. 6
Core Versions ... 6
Supported Interface .. 6
Device Utilization and Performance ... 6
Memory Requirements ... 8

Functional Block Descriptions ... 9

Interface Descriptions ... 11
Parameters on Core10100 ... 11
CSR Interface Signals .. 12
Other Interface Signals .. 14

Software Interface .. 17
Register Maps .. 17
Frame Data and Descriptors .. 30
Internal Operation .. 40

Interface Timing ... 53
Core10100—CSR Interface ... 53
Core10100—Data Interface ... 53
Core10100-RMII Interface .. 55
Clock and Reset Control .. 55
Timing Constraints ... 56

Tool Flows .. 57
Licensing .. 57
SmartDesign .. 57

Testbench Operation and Modification .. 59
Testbench operation and modification ... 59

System Operation .. 61

Transmit and Receive Functional Timing Examples .. 63
Transmit Examples ... 63
Transmit Descriptor and Data Fetches ... 65

List of Document Changes ... 73

Core10100 v5.1 Handbook 2

 Table of Contents

Product Support ... 75
Customer Service .. 75
Customer Technical Support Center ... 75
Technical Support .. 75
Website .. 75
Contacting the Customer Technical Support Center ... 75
ITAR Technical Support .. 76

Core10100 v5.1 Handbook 3

Introduction

Core10100 is a high-speed media access control (MAC) Ethernet controller (Figure 1). It implements Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) algorithms defined by IEEE 802.3 for MAC over
an Ethernet connection. Communication with an external host is implemented via a set of Control and Status
registers and the DMA controller for external shared RAM. For data transfers, Core10100 operates as a
DMA master. It automatically fetches from transmit data buffers and stores receive data buffers into external
RAM with minimum CPU intervention. Linked list management enables the use of various memory allocation
schemes. Internal RAMs are used as configurable FIFO memory blocks, and there are separate memory
blocks for transmit and receive processes. The core has a generic host-side interface that connects with
external CPUs. This host interface can be configured to work with 8-, 16-, or 32-bit data bus widths with big
or little-endian byte ordering.

Transmit Data
RAM

Data
Interface

Control
Interface

Transmit
Control

Receive Data
RAM

Transmit
RMII/MII

Receive
RMII/MII

Control and Status
Registers and Control

Logic Address
RAM

Data
Controller

Receive
Control

Figure 1 Core10100 Block Diagram

Figure 2 shows a typical application using Core10100. Typical applications include local area network (LAN)
controllers; avionics full-duplex switched Ethernet (AFDX) controllers and embedded systems. Figure 3
shows the primary blocks of Core10100.

Shared
RAM

CPU
(8-, 16-, or 32-bit)

Data interface bus

Control interface bus
RMII/MII
Interface

PHYCore10100

Figure 2 Typical Core10100 Application

Core10100 v5.1 Handbook 5

Introduction

Supported Device Families
• SmartFusion®2
• IGLOO®2
• IGLOO
• IGLOOe
• ProASIC3
• ProASIC3E
• ProASIC®3L
• Fusion
• ProASICPLUS®
• Axcelerator®
• RTAX-S™

Core Versions
The handbook applies to Core10100 v5.1 onwards and the core release is associated with the release
notes.

 Supported Interface
• Core10100—synchronous CPU and memory interfaces (legacy interface)

Device Utilization and Performance
Core10100 can be implemented in the following Microsemi® FPGA devices. Table 1 through Table 3 provide
the typical utilization and performance data for the core implemented in these devices.

Table 1 Core10100 Device Utilization and Performance for an 8-Bit Datapath
Family Cells or Tiles RAM Utilization Performance

(MHz)
Combinatorial Sequential Total Device Total

IGLOO/e 4,330 1,918 6,248 14 AGLE600 45% 30

ProASIC3
ProASIC3E
ProASIC3L

4,173 1,923 6,096 14 A3P6000 44% 49

Fusion 4,215 1,918 6,133 14 AFS600 44% 56

ProASICPLUS 5,547 1,958 7,505 29 APA600 35% 27

Axcelerator 3,087 2,207 5,114 13 AX1000 28% 73

RTAX-S 3,055 2,014 5,069 13 RTAX1000S 28% 57

SmartFusion2 3,118 2,122 5,240 6 M2S150TS 35% 120

IGLOO2 3,110 2,135 5,240 6 M2GL150TS 35% 120

6 Core10100 v5.1 Handbook

Device Utilization and Performance

Table 2 Core10100 Device Utilization and Performance for a 16-Bit Datapath
Family Cells or Tiles RAM Utilization Performance

(MHz)
Combinatorial Sequential Total Device Total

IGLOO/e 4,715 2,045 6,760 14 AGLE600 49% 30

ProASIC3
ProASIC3E
ProASIC3L

4,529 2,050 6,579 14 A3P600 49% 37

Fusion 4,693 2,043 6,736 14 AFS600 49% 36

ProASICPLUS 6,163 2,087 8,250 29 APA600 38% 26

Axcelerator 3,328 2,170 5,498 13 AX1000 30% 67

RTAX-S 3,316 2,153 5,469 13 RTAX1000S 30% 49

SmartFusion2 3,110 2,135 5,245 6 M2S150TS 35% 120

IGLOO2 3,110 2,135 5,245 6 M2GL150TS 35% 120

Table 3 Core10100 Device Utilization and Performance for a 32-Bit Datapath
Family Cells or Tiles RAM Utilization Performance

(MHz)
Combinatorial Sequential Total Device Total

IGLOO/e 4,715 1,963 6,678 14 AGLE600 48% 30

ProASIC3
ProASIC3E
ProASIC3L

4,435 1,967 6,402 14 A3P600 46% 36

Fusion 4,597 1,961 6,558 14 AFS600 47% 36

ProASICPLUS 5,938 1,997 7,935 29 APA600 65% 26

Axcelerator 3,216 2,090 5,306 13 AX1000 29% 55

RTAX-S 3,225 2,089 5,314 13 RTAX1000S 29% 44

SmartFusion2 3,246 2,178 5,424 6 M2S150TS 37% 123

IGLOO2 3,246 2,178 5,424 6 M2GL150TS 37% 123
Note: Data in the above tables was achieved using Microsemi Libero® Integrated Design Environment (IDE), using the

parameter settings given in Table 4 Performance is for Std. speed grade parts, was achieved using the Core10100
macro alone, and represents the system clock (CLKDMA) frequency. The CLKR and CLKT clock domains are capable of
operating at 25 MHz or 2.5 MHz, depending on the link speed. The CLKCSR clock domain is capable of operating in
excess of CLKDMA.

Core10100 v5.1 Handbook 7

Introduction

Table 4 Parameter Settings
Parameter Core10100

8-Bit 16-Bit 32-Bit

ENDIANESS 0 0 0

ADDRFILTER 1 1 1

FULLDUPLEX 0 0 0

CSRWIDTH 8 16 32
DATAWIDTH 8 16 32

DATADEPTH 20 24 32

TFIFODEPTH 11 10 9

RFIFODEPTH 12 11 10

TCDEPTH 1 1 1

RCDEPTH 2 2 2

RMII 1 1 1

Memory Requirements
Core10100 uses FPGA memory blocks. The actual number of memory blocks varies based on the
parameter settings. The approximate number of RAM blocks is given by EQ1, EQ 2, and EQ 3.

IGLOO/e, ProASIC3/E, ProASIC3L, Fusion, Axcelerator, and RTAX-S
NRAMS = (DW / 8 × (2TFIFODEPTH / 512 + 2RFIFODEPTH / 512) + ADDRFILTER

EQ 1

Where, DW is DATAWIDTH.

ProASICPLUS
NRAMS = (DW / 8 × (2TFIFODEPTH / 256 + 2RFIFODEPTH / 256) + 2 × ADDRFILTER

EQ 2
Where, DW is DATAWIDTH.

SmartFusion2, IGLOO2

NRAMS = (DW / 8 × (2TFIFODEPTH / 1024 + 2RFIFODEPTH / 1024) + 2 × ADDRFILTER
 EQ 3

where, DW is DATAWIDTH

Note: The number of RAM blocks may vary slightly from the above equations due to the Synthesis
tool selecting different aspect ratios and inferring memories for internal logic.

8 Core10100 v5.1 Handbook

Functional Block Descriptions

Core10100 architecture, shown in Figure 3, consists of the functional blocks described in this section.

Transmit Data
RAM

RLSM

DMA

TCCLKDMA

Data
Interface

CSR
Interface

BD

RC

TLSM TFIFO

RFIFO

Receive Data
RAM

CLKR

CLKT

Transmit
RMII/MII

Receive
RMII/MII

CSR
(control and status registers

and control logic)

INT

RSTCRST

CLKCSR

TPS

RPS

Address
RAM

MII Managment
Interface

Serial ROM
Interface

External Address
Filtering Interface

MII to RMII
(optional)

Figure 3 Core 10100 Architecture

CSR – Control/Status Register Logic
The CSR component is used to control Core10100 operation by the host. It implements the CSR register set
and the interrupt controller. It also provides a generic host interface supporting 8-, 16-, and 32-bit
transfer. The CSR component operates synchronously with the CLKCSR clock from the host CSR interface.
The CSR also provides a Serial ROM interface and MII Management interface. The host can access
these two interfaces via read/write CSR registers.

DMA – Direct Memory Access Controller
The direct memory access controller implements the host data interface. It services both the receive and
transmit channels. The TLSM and TFIFO have access to one DMA channel. The RLSM and RFIFO have
access to the other DMA channel. The direct memory access controller operates synchronously with the
CLKDMA clock from the host data interface.

Core10100 v5.1 Handbook 9

Functional Block Descriptions

TLSM – Transmit Linked List State Machine
The transmit linked list state machine implements the descriptor/buffer architecture of Core10100. It
manages the transmit descriptor list and fetches the data prepared for transmission from the data buffers into
the transmit FIFO. The transmit linked list state machine controller operates synchronously with the
CLKDMA clock from the host data interface.

TFIFO – Transmit FIFO
The transmit FIFO is used for buffering data prepared for transmission by Core10100. It provides an
interface for the external transmit data RAM working as FIFO memory. It fetches the transmit data from the
host via the DMA interface. The FIFO size can be configured via the core parameters. The transmit FIFO
controller operates synchronously with the CLKDMA clock from the host data interface.

TC – Transmit Controller
The transmit controller implements the 802.3 transmit operation. From the network side, it uses the
standard 802.3 MII interface for an external PHY device. The TC unit reads transmit data from the
external transmit data RAM, formats the frame, and transmits the framed data via the MII. The transmit
controller operates synchronously with the CLKT clock from the MII interface.

BD – Backoff/Deferring
The backoff/deferring controller implements the 802.3 half-duplex operation. It monitors the status of the
Ethernet bus and decides whether to perform a transmit or backoff/deferring of the data via the MII. It
operates synchronously with the CLKT clock from the MII interface.

RLSM – Receive Linked List State Machine
The receive linked list state machine implements the descriptor/buffer architecture of Core10100. It
manages the receive descriptor list and moves the data from the receive FIFO into the data buffers. The
receive linked list state machine controller operates synchronously with the CLKDMA clock from the host
data interface.

RFIFO – Receive FIFO
The receive FIFO is used for buffering data received by Core10100. It provides an interface for the
external RAM working as FIFO memory. The FIFO size can be configured by the generic parameters of the
core. The receive FIFO controller operates synchronously with the CLKDMA clock from the host data
interface.

RC – Receive Controller
The receive controller implements the 802.3 receive operation. From the network side it uses the standard
802.3 MII interface for an external PHY device. The RC block transfers data received from the MII to the
receive data RAM. It supports internal address filtering. It also supports an external address filtering
interface. The receive controller operates synchronously with the CLKR clock from the MII interface.

RSTC – Reset Controller
The reset controller is used to reset all components of Core10100. It generates a reset signal asynchronous
to all clock domains in the design from the external reset line and software reset.

Memory Blocks
There are three internal memory blocks required for the proper operation of Core10100:
• Receive data RAM – Synchronous RAM working as receive FIFO
• Transmit data RAM – Synchronous RAM working as transmit FIFO
• Address RAM – Synchronous RAM working as MAC address memory

RMII – RMII to MII Interface
The Reduced Media Independent Interface (RMII) reduces the number of pins required for connecting to the
PHY from 16 to 8.

10 Core10100 v5.1 Handbook

Interface Descriptions

Core10100 is available with the following interfaces:
- CSR Interface
- Data Interface
- Other Interface Signals: Includes a set of signals to the backend layer (PHY), serial ROM interface, general
host interface and address filtering interface .

Parameters on Core10100
Table 5 details the parameters on Core10100.

Table 5 Core10100 Parameters
Parameter Values Default

Value
Description

FULLDUPLEX 0 to 1 0 This controls the core’s support of half-duplex operation.

0: Half- and full-duplex operation supported
1: Full-duplex only
When set to 1, the collision and backoff logic required to support half-
duplex operation is omitted, reducing the size of the core.

ENDIANESS 0 to 2 1 Sets the endianess of the core:

0: Programmable by software

1: Little
2: Big
When set to a nonzero value, the size of the core is reduced.

ADDRFILTER 0 to 1 1 Enables the internal address filter RAM.

0: Internal address filter RAM disabled

1: Internal address filter RAM enabled

DATADEPTH 20 to 32 32 Sets the width of the address bus used to interface to the system memory.

DATAWIDTH 8, 16, 32 32 Sets the width of the data bus used to interface to the system
memory.

CSRWIDTH 8, 16, 32 32 Sets the width of the data bus used to access the registers within the core.

TCDEPTH 1 to 4 1 Defines the maximum number of frames that can reside in the
transmit FIFO at one time. The maximum number of frames that
reside in the TX FIFO at one time is 2TCDEPTH.

RCDEPTH 1 to 4 2 Defines the maximum number of frames that can reside in the
receive FIFO at one time. The maximum number of frames that
reside in the RX FIFO at one time is 2RCDEPTH -1.

TFIFODEPTH 7 to 12 9 Sets the size of the internal FIFO used to buffer transmit data. The size
is 2TFIFODEPTH × DATAWIDTH / 8 bytes.
The transmit FIFO size must be greater than 2^TCDEPTH times the
maximum permitted frame size.

Core10100 v5.1 Handbook 11

Interface Descriptions

Parameter Values Default
Value

Description

RFIFODEPTH 7 to 12 10 Sets the size of the internal FIFO used to buffer receive data. The size
is 2RFIFODEPTH × DATAWIDTH / 8 bytes.
The receive FIFO size must be greater than RCDEPTH times the
maximum permitted frame size.

RMII 0, 1 0 When set to 1, the core supports RMII interface. When set to 0, the core
supports MII interface.

CSR Interface Signals
Table 6 lists the signals included on the Core10100.

Table 6 Core10100 Signals

Name Type Polarity Description

Control and Status Register Interface

CLKCSR In Rise CSR clock

CSRREQ In HIGH This signal is set by a host to request a data transfer on the CSR interface. It can
be

 a read or a write request, depending on the value of the CSRRW signal.

CSRRW In HIGH This signal indicates the type of request on the CSR interface. Setting CSRRW
indicates a read operation, and clearing it indicates a write operation.

CSRBE In CSRWIDTH/8 This signal is the data byte enable to indicate which byte lanes of CSRDATAI
or CSRDATAO are the valid data bytes. Each bit of the CSRBE controls a
single byte lane.
All CSRBE signal combinations are allowed.

CSRDATAI In CSRWIDTH The write data is provided by the system on the CSRDATAI inputs during the
write request.

CSRADDR In 8 The CSRADDR receives the address of an individual CSR data transaction.
The meaning of CSRADDR depends on the CSRWIDTH parameter. For
CSRWIDTH = 32 (32-bit interface), only the CSRADDR bits from 6 down to 2
are significant. The addresses are longword-aligned (32-bit) in this mode.
For CSRWIDTH = 16 (16-bit interface), the CSRADDR bits from 6 down to 1
are significant. The addresses are word-aligned (16-bit) in this mode.
For CSRWIDTH = 8 (8-bit interface), all bits of CSRADDR are significant. The
addresses are byte-aligned (8-bit) in this mode.

CSRACK Out HIGH The CSRACK signal indicates either that valid data is present on the
CSRDATAO outputs during a read request or that the CSRDATAI inputs have
been sampled during a write request. The current version of Core10100 has
the CSRACK signal statically tied to logic 1—Core10100 responds to reads
and writes immediately.

CSRDATAO Out CSRWIDTH The CSRDATAO signal provides the read data in response to a read
request.

12 Core10100 v5.1 Handbook

Name Type Polarity Description

Data Interface

CLKDMA In Rise Data clock

DATAACK In HIGH The DATAACK input is an acknowledge signal supplied by the host in response
to the MAC’s request. In the case of a read operation, DATAACK indicates valid
data is on the DATAI input. The DATAI input must be stable while DATAACK is
set. In the case of a write operation, setting DATAACK indicates that the host is
ready to fetch the data supplied by Core10100 on the DATAO output.
Regardless of the current transaction type (write or read), a data transfer occurs
on every rising edge of CLKDMA on which both DATAREQ and DATAACK are
set. The DATAACK signal can be asserted or deasserted at any clock cycle,
even in the middle of a burst transfer.

DATAI In DATAWIDTH The read data must be provided on the DATAI input by the system in
response to a read request.

DATAREQ Out HIGH This signal is set by Core10100 to put a request for the data transfer on the
interface. While DATAREQ remains active, the DATARW signal is stable— there
is no transition on DATARW.

DATARW Out HIGH The DATARW output indicates the type of request on the data interface. When
set, it indicates a read operation; when cleared, it indicates a write operation.

DATAEOB Out HIGH The DATAEOB output is an “end-of-burst” signal used for burst
transactions.

DATAO Out DATAWIDTH Data to be written is provided by Core10100 on DATAO during a write request.
DATAADDR Out DATADEPTH This signal addresses the external memory space for a data transaction. The

meaning of the DATAADDR bits depends on the DATAWIDTH parameter.
For DATAWIDTH = 32 (32-bit interface), only DATAADDR bits DATADEPTH–1
down to 2 are significant. The addresses are longword- aligned (32-bit) in this
mode.
For DATAWIDTH = 16 (16-bit interface), the DATAADDR bits from
DATADEPTH–1 down to 1 are significant. The addresses are word-aligned (16-
bit) in this mode.
For DATAWIDTH = 8 (8-bit interface), all bits of DATAADDR are significant. The
addresses are byte-aligned (8-bit) in this mode.

Core10100 v5.1 Handbook 13

CSR Interface Signals

Interface Descriptions

Other Interface Signals
Table 7 Signals Included in Core10100
Name Type Polarity/

Bus
Size

Description

General Host Interface Signal

RSTCSR In HIGH Host-side reset

INT Out HIGH Interrupt

RSTTCO Out HIGH Transmit side reset

RSTRCO Out HIGH Receive side reset

TPS Out HIGH Transmit process stopped

RPS Out HIGH Receive process stopped

Serial ROM Interface

SDI In 1 Serial data

SCS Out 1 Serial chip select

SCLK Out 1 Serial clock output

SDO Out 1 Serial data output

External Address Filtering Interface

MATCH In HIGH External address match
When HIGH, indicates that the destination address on the MATCHDATA port is
recognized by the external address-checking logic and that the current frame must be
received by Core10100.
When LOW, indicates that the destination address on the MATCHDATA port is not
recognized and that the current frame should be discarded.
Note that the match signal should be valid only when the MATCHVAL signal is HIGH.

MATCHVAL In HIGH External address match valid
When HIGH, indicates that the MATCH signal is valid.

MATCHEN Out HIGH External match enable
When HIGH, indicates that the MATCHDATA signal is valid. The MATCHEN output
should be used as an enable signal for the external address-checking logic. It is HIGH
for at least four CLKR clock periods to allow for the latency of external address-
checking logic.

MATCHDATA Out 48 External address match data
The MATCHDATA signal represents the 48-bit destination address of the
received frame.
Note that the MATCHDATA signal is valid only when the MATCHEN signal is HIGH.

14 Core10100 v5.1 Handbook

Other Interface Signals

Name Type Polarity/
Bus
Size

Description

RMII/MII PHY Interface

CLKT In Rise Clock for transmit operation
This must be a 25 MHz clock for a 100 Mbps operation or a 2.5 MHz clock for a 10
Mbps operation. This input is only used in MII mode. In RMII mode, this input will be
grounded by SmartDesign.

CLKR In Rise Clock for receive operation
This must be a 25 MHz clock for a 100 Mbps operation or a 2.5 MHz clock for a 10
Mbps operation. This input is only used in MII mode. In RMII mode, this input will be
grounded by SmartDesign.

RX_ER In HIGH Receive error
If RX_ER is asserted during Core10100 reception, the frame is received and status
of the frame is updated with RX_ER.
The RX_ER signal must be synchronous to the CLKR receive clock.

RX_DV In HIGH Receive data valid signal
The PHY device must assert RX_DV when a valid data nibble is provided on the RXD
signal.
The RX_DV signal must be synchronous to the CLKR receive clock.

COL In HIGH Collision detected
This signal must be asserted by the PHY when a collision is detected on the medium.
It is valid only when operating in a half-duplex mode. When operating in a full-duplex
mode, this signal is ignored by Core10100.
The COL signal is not required to be synchronous to either CLKR or CLKT. The COL
signal is sampled internally by the CLKT clock.

CRS In HIGH Carrier sense
This signal must be asserted by the PHY when either a receive or transmit medium is
non-idle.
The CRS signal is not required to be synchronous with either CLKR or CLKT.

MDI In 1 MII management data input
The state of this signal can be checked by reading the CSR9.19 bit.

RXD In 4 Receive data recovered and decoded by PHY The
RXD[0] signal is the least significant bit.
The RXD bus must be synchronous to the CLKR in MII mode. In RMII mode, RXD[1:0]
is used and RXD[3:2] will be grounded by SmartDesign. In RMII mode, RXD[1:0] is
synchronous to RMII_CLK.

TX_EN Out HIGH Transmit enable
When asserted, indicates valid data for the PHY on the TXD port. The
TX_EN signal is synchronous to the CLKT transmit clock.

TXER Out HIGH Transmit error
The current version of Core10100 has the TXER signal statically tied to logic 0 (no
transmit errors).

Core10100 v5.1 Handbook 15

Interface Descriptions

Name Type Polarity/
Bus
Size

Description

MDC Out Rise MII management clock
This signal is driven by the CSR9.16 bit.

MDO Out 1 MII management data output
This signal is driven by the CSR9.18 bit.

MDEN Out HIGH MII management buffer control

TXD Out 4 Transmit data
The TXD[0] signal is the least significant bit.
In RMII mode TXD[1:0] is used. In RMII mode, TXD[1:0] is synchronous to RMII_CLK.
The TXD bus is synchronous to the CLKT in MII mode.

RMII_CLK In Rise 50 MHz ± 50 ppm clock source shared with RMII PHY. This input is used only in RMII
mode. In MII mode, this input will be grounded by SmartDesign.

CRS_DV In High Carrier sense/receive data valid for RMII PHY

16 Core10100 v5.1 Handbook

Software Interface

Register Maps
Control and Status Register Addressing

The Control and Status registers are located physically inside Core10100 and can be accessed directly by
a host via an 8-, 16- or 32-bit interface. All the CSRs are 32 bits long and quadword-aligned. The
address bus of the CSR interface is 8 bits wide, and only bits 6–0 of the location code shown in Table 8 are
used to decode the CSR register address.

Table 8 CSR Locations

Register Address Reset Value Description

CSR0 00H FE000000H Bus mode

CSR1 08H 00000000H Transmit poll demand

CSR2 10H 00000000H Receive poll demand

CSR3 18H FFFFFFFFH Receive list base address

CSR4 20H FFFFFFFFH Transmit list base address

CSR5 28H F0000000H Status

CSR6 30H 32000040H Operation mode

CSR7 38H F3FE0000H Interrupt enable

CSR8 40H E0000000H Missed frames and overflow counters

CSR9 48H FFF483FFH MII management

CSR10 50H 00000000H Reserved

CSR11 58H FFFE0000H Timer and interrupt mitigation control

Note: CSR9 bits 19 and 2 reset values are dependent on the MDI and SDI inputs. The above assumes MDI is high and SDI is
low.

CSR Definitions

Table 9 Bus Mode Register (CSR0)

Bits [31:24]

Bits [23:16] DBO TAP

Bits [15:8] PBL

Bits [7:0] BLE DSL BAR SWR

Notes: The CSR0 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value.
Writing to these bits has no effect.

Core10100 v5.1 Handbook 17

Software Interface

Table 10 Bus Mode Register Bit Functions

Bit Symbol Function

CSR0.20 DBO Descriptor byte ordering mode:
1: Big-endian mode used for data descriptors

0: Little-endian mode used for data descriptors
CSR0.(19..17) TAP Transmit automatic polling

If TAP is written with a nonzero value, Core10100 performs an automatic transmit descriptor
polling when operating in suspended state. When the descriptor is available, the transmit
process goes into running state. When the descriptor is marked as owned by the host, the
transmit process remains suspended.
The poll is always performed at the current transmit descriptor list position. The time
interval between two consecutive polls is shown in Table 11.

CSR0.(13..8) PBL Programmable burst length
Specifies the maximum number of words that can be transferred within one DMA transaction.
Values permissible are 0, 1, 2, 4, 8, 16, and 32. When the value 0 is written, the bursts are
limited only by the internal FIFOs threshold levels.
The width of the single word is equal to the CSRWIDTH generic parameter; that is, all data
transfers always use the maximum data bus width.
Note that PBL is valid only for the data buffers. The data descriptor burst length depends on the
DATAWIDTH parameter. The rule is that every descriptor field (32-bit) is accessed with a single
burst cycle. For DATAWIDTH = 32, the descriptors are accessed with a single 32-bit word
transaction; for DATAWIDTH = 16, a burst of two 16-bit words; and for DATAWIDTH = 8, a
burst of four 8-bit words.

CSR0.7 BLE Big/little endian
Selects the byte-ordering mode used by the data buffers.

1: Big-endian mode used for the data buffers
0: Little-endian mode used for the data buffers

CSR0.(6..2) DSL Descriptor skip length
Specifies the number of longwords between two consecutive descriptors in a ring
structure.

CSR0.1 BAR Bus arbitration scheme
1: Transmit and receive processes have equal priority to access the bus
0: Intelligent arbitration, where the receive process has priority over the transmit process

CSR0.0 SWR Soft reset
Setting this bit resets all internal flip-flops.
The processor should write a '1' to this bit and then wait until a read returns a 0, indicating that
the reset has completed. This bit will remain set for several clock cycles.

18 Core10100 v5.1 Handbook

Register Maps

Table 11 Transmit Automatic Polling Intervals

CSR0.(19..17) 10 Mbps 100 Mbps

000 TAP disabled TAP disabled

001 819 µs 81.9 µs

010 2,450 µs 245 µs

011 5,730 µs 573 µs

100 51.2 µs 5.12 µs

101 102.4 µs 10.24 µs

110 153.6 µs 15.36 µs

111 358.4 µs 35.84 µs

Table 12 Transmit Poll Demand Register (CSR1)

Bits [31:24] TPD(31..24)

Bits [23:16] TPD(23..16)

Bits [15:8] TPD(15..8)

Bits [7:0] TPD(7..0)

Table 13 Transmit Poll Demand Bit Functions

Bit Symbol Function

CSR1.(31..0) TPD Writing this field with any value instructs Core10100 to check for frames to be transmitted. This
operation is valid only when the transmit process is suspended.
If no descriptor is available, the transmit process remains suspended.
When the descriptor is available, the transmit process goes into the running state.

Table 14 Receive Poll Demand Register (CSR2)

Bits 31:24 RPD(31..24)

Bits 23:16 RPD(23..16)

Bits 15:8 RPD(15..8)

Bits 7:0 RPD(7..0)

Table 15 • Receive Poll Demand Bit Functions

Bit Symbol Function

CSR2.(31..0) RPD Writing this field with any value instructs Core10100 to check for receive descriptors to be
acquired. This operation is valid only when the receive process is suspended.
If no descriptor is available, the receive process remains suspended.
When the descriptor is available, the receive process goes into the running state.

Core10100 v5.1 Handbook 19

Software Interface

Table 16 Receive Descriptor List Base Address Register (CSR3)

Bits 31:24 RLA(31..24)

Bits 23:16 RLA(23..16)

Bits 15:8 RLA(15..8)

Bits 7:0 RLA(7..0)

Table 17 Receive Descriptor List Base Address Register Bit Functions

Bit Symbol Function

CSR3.(31..0) RLA Start of the receive list address
Contains the address of the first descriptor in a receive descriptor list. This address must be
longword-aligned (RLA(1..0) = 00).

Table 18 Transmit Descriptor List Base Address Register (CSR4)

Bits [31:24] TLA(31..24)

Bits [23:16] TLA(23..16)

Bits [15:8] TLA(15..8)

Bits [7:0] TLA(7..0)

Table 19 Transmit Descriptor List Base Address Register Bit Functions

Bit Symbol Function

CSR4.(31..0) TLA Start of the transmit list address
Contains the address of the first descriptor in a transmit descriptor list. This address must be
longword-aligned (TLA(1..0) = 00).

Table 20 Status Register (CSR5)

Bits [31:24]

Bits [23:16] TS RS NIS

Bits [15:8] AIS ERI GTE ETI RPS

Bits [7:0] RU RI UNF TU TPS TI

Note: The CSR5 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value.
Writing to these bits has no effect.

20 Core10100 v5.1 Handbook

Register Maps

Table 21 Status Register Bit Functions

Bit Symbol Function

CSR5.(22..20) TS Transmit process state (read-only)
Indicates the current state of a transmit process:
000: Stopped; RESET or STOP TRANSMIT command issued 001:
Running, fetching the transmit descriptor
010: Running, waiting for end of transmission
011: Running, transferring data buffer from host memory to FIFO

100: Reserved
101: Running, setup packet
110: Suspended; FIFO underflow or unavailable descriptor

111: Running, closing transmit descriptor

CSR5.(19..17) RS Receive process state (read-only)
Indicates the current state of a receive process:
000: Stopped; RESET or STOP RECEIVE command issued 001:
Running, fetching the receive descriptor
010: Running, waiting for the end-of-receive packet before prefetch of the next descriptor
011: Running, waiting for the receive packet

100: Suspended, unavailable receive buffer

101: Running, closing the receive descriptor

110: Reserved
111: Running, transferring data from FIFO to host memory

CSR5.16 NIS Normal interrupt summary
This bit is a logical OR of the following bits:
CSR5.0: Transmit interrupt
CSR5.2: Transmit buffer unavailable
CSR5.6: Receive interrupt
CSR5.11: General-purpose timer overflow
CSR5.14: Early receive interrupt
Only the unmasked bits affect the normal interrupt summary bit. The user
can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.15 AIS Abnormal interrupt summary
This bit is a logical OR of the following bits:
CSR5.1: Transmit process stopped

CSR5.5: Transmit underflow
CSR5.7: Receive buffer unavailable
CSR5.8: Receive process stopped
CSR5.10:: Early transmit interrupt
Only the unmasked bits affect the abnormal interrupt summary bit. The user can clear this bit
by writing a 1. Writing a 0 has no effect.

CSR5.14 ERI Early receive interrupt
Set when Core10100 fills the data buffers of the first descriptor. The user can clear this bit by
writing a 1. Writing a 0 has no effect.

Core10100 v5.1 Handbook 21

Software Interface

Bit Symbol Function

CSR5.11 GTE General-purpose timer expiration
Gets set when the general-purpose timer reaches zero value. The user can clear this bit by
writing a 1. Writing a 0 has no effect.

CSR5.10 ETI Early transmit interrupt
Indicates that the packet to be transmitted was fully transferred into the FIFO. The user can clear
this bit by writing a 1. Writing a 0 has no effect.

CSR5.8 RPS Receive process stopped
RPS is set when a receive process enters a stopped state.
The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.7 RU Receive buffer unavailable
When set, indicates that the next receive descriptor is owned by the host and is unavailable for
Core10100. When RU is set, Core10100 enters a suspended state and returns to receive
descriptor processing when the host changes ownership of the descriptor. Either a receive-poll-
demand command is issued or a new frame is recognized by Core10100.
The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.6 RI Receive interrupt
Indicates the end of a frame receive. The complete frame has been transferred into the receive
buffers. Assertion of the RI bit can be delayed using the receive interrupt mitigation counter/timer
(CSR11.NRP/CSR11.RT).
The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.5 UNF Transmit underflow
Indicates that the transmit FIFO was empty during a transmission. The transmit process goes
into a suspended state.
The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.2 TU Transmit buffer unavailable
When set, TU indicates that the host owns the next descriptor on the transmit descriptor list;
therefore, it cannot be used by Core10100. When TU is set, the transmit process goes into a
suspended state and can resume normal descriptor processing when the host changes
ownership of the descriptor. Either a transmit-poll-demand command is issued or transmit
automatic polling is enabled.
The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.1 TPS Transmit process stopped
TPS is set when the transmit process goes into a stopped state. The user can clear this bit by
writing a 1. Writing a 0 has no effect.

CSR5.0 TI Transmit interrupt
Indicates the end of a frame transmission process. Assertion of the TI bit can be delayed using
the transmit interrupt mitigation counter/timer (CSR11.NTP/CSR11.TT).
The user can clear this bit by writing a 1. Writing a 0 has no effect.

Table 22 Operation Mode Register (CSR6)

Bits [31:24] RA

Bits [23:16] TTM SF

Bits [15:8] TR ST FD

Bits [7:0] PM PR IF PB HO SR HP

Note: The CSR6 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value. Writing to
these bits has no effect.

22 Core10100 v5.1 Handbook

Register Maps

Table 23 Operation Mode Register Bit Functions

Bit Symbol Function

CSR6.30 RA Receive all
When set, all incoming frames are received, regardless of their destination address. An
address check is performed, and the result of the check is written into the receive descriptor
(RDES0.30).

CSR6.22 TTM Transmit threshold mode
1: Transmit FIFO threshold set for 100 Mbps mode

0: Transmit FIFO threshold set for 10 Mbps mode
In RMII mode, this bit is also used to select the frequency of both transmit and receive clocks
between 2.5 MHz and 25 MHz.
This bit can be changed only when a transmit process is in a stopped state.

CSR6.21 SF Store and forward
When set, the transmission starts after a full packet is written into the transmit FIFO, regardless
of the current FIFO threshold level.
This bit can be changed only when the transmit process is in the stopped state.

CSR6.(15..14) TR Threshold control bits
These bits, together with TTM, SF, and PS, control the threshold level for the transmit FIFO.

CSR6.13 ST Start/stop transmit command
Setting this bit when the transmit process is in a stopped state causes a transition into a running
state. In the running state, Core10100 checks the transmit descriptor at a current descriptor list
position. If Core10100 owns the descriptor, then the data starts to transfer from memory into the
internal transmit FIFO. If the host owns the descriptor, Core10100 enters a suspended state.
Clearing this bit when the transmit process is in a running or suspended state instructs
Core10100 to enter the stopped state.
Core10100 does not go into the stopped state immediately after clearing the ST bit; it will finish
the transmission of the frame data corresponding to current descriptor and then moves to
stopped state.
The status bits of the CSR5 register should be read to check the actual transmit operation state.
Before giving the Stop Transmit command, the transmit state machine in CSR5 can be checked.
If the Transmission State machine is in SUSPENDED state, the Stop Transmit command can be
given so that complete frame transmission by MAC is ensured.

CSR6.9 FD Full-duplex mode:
0: Half-duplex mode
1: Forcing full-duplex mode
Changing of this bit is allowed only when both the transmitter and receiver processes are in the
stopped state.

CSR6.7 PM Pass all multicast
When set, all frames with multicast destination addresses will be received, regardless of the
address check result.

CSR6.6 PR Promiscuous mode
When set, all frames will be received regardless of the address check result. An address check
is not performed.

Core10100 v5.1 Handbook 23

Software Interface

Bit Symbol Function

CSR6.4 IF Inverse filtering (read-only)
If this bit is set when working in a perfect filtering mode, the receiver performs an inverse filtering
during the address check process.
The “filtering type” bits of the setup frame determine the state of this bit.

CSR6.3 PB Pass bad frames
When set, Core10100 transfers all frames into the data buffers, regardless of the receive errors.
This allows the runt frames, collided fragments, and truncated frames to be received.

CSR6.2 HO Hash-only filtering mode (read-only)
When set, Core10100 performs an imperfect filtering over both the multicast and physical
addresses.
The “filtering type” bits of the setup frame determine the state of this bit.

CSR6.1 SR Start/stop receive command
Setting this bit enables the reception of the frame by Core10100 and the frame is written into
the receive FIFO. If the bit is not enabled, then the frame is not written into the receive FIFO.
Setting this bit when the receive process is in a stopped state causes a transition into a
running state. In the running state, Core10100 checks the receive descriptor at the current
descriptor list position. If Core10100 owns the descriptor, it can process an incoming frame.
When the host owns the descriptor, the receiver enters a suspended state and also sets the
CSR5.7 (receive buffer unavailable) bit.
Clearing this bit when the receive process is in a running or suspended state instructs
Core10100 to enter a stopped state after receiving the current frame.
Core10100 does not go into the stopped state immediately after clearing the SR bit. Core10100
will finish all pending receive operations before going into the stopped state. The status bits of
the CSR5 register should be read to check the actual receive operation state.

CSR6.0 HP Hash/perfect receive filtering mode (read-only)
0: Perfect filtering of the incoming frames is performed according to the physical
addresses specified in a setup frame.
1: Imperfect filtering over the frames with the multicast addresses is performed according to the
hash table specified in a setup frame.
A physical address check is performed according to the CSR6.2 (HO, hash-only) bit. When
both the HO and HP bits are set, an imperfect filtering is performed on all of the addresses.

The “filtering type” bits of the setup frame determine the state of this bit.

24 Core10100 v5.1 Handbook

Register Maps

Table 24 lists all possible combinations of the address filtering bits. The actual values of the IF, HO, and HP
bits are determined by the filtering type (FT1–FT0) bits in the setup frame, as shown in Table 43. The IF,
HO, and HP bits are read-only.

Table 24 Receive Address Filtering Modes Summary

PM
CSR6.7

PR
CSR6.6

IF
CSR6.4

HO
CSR6.2

HP
CSR6.0

Current Filtering Mode

0 0 0 0 0 16 physical addresses: perfect filtering mode

0 0 0 0 1 One physical address for physical addresses and 512-bit
hash table for multicast addresses

0 0 0 1 1 512-bit hash table for both physical and multicast addresses

0 0 1 0 0 Inverse filtering

x 1 0 0 x Promiscuous mode

0 1 0 1 1 Promiscuous mode

1 0 0 0 x Pass all multicast frames

1 0 0 1 1 Pass all multicast frames

Table 25 lists the transmit FIFO threshold levels. These levels are specified in bytes.

Table 25 Transmit FIFO Threshold Levels (bytes)

CSR6.21 CSR6.15..14 CSR6.22 = 1 CSR6.22 = 0

0 00 64 128

0 01 128 256

0 10 128 512

0 11 256 1024

1 xx Store and forward Store and forward

Table 26 Interrupt Enable Register (CSR7)

Bits [31:24]

Bits [23:16] NIE

Bits [15:8] AIE ERE GTE ETE RSE

Bits [7:0] RUE RIE UNE TUE TSE TIE

Note: The CSR7 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value. Writing to
these bits has no effect.

Core10100 v5.1 Handbook 25

Software Interface

Table 27 Interrupt Enable Register Bit Function

Bit Symbol Function

CSR7.16 NIE Normal interrupt summary enable
When set, normal interrupts are enabled. Normal interrupts are listed below:
CSR5.0: Transmit interrupt
CSR5.2: Transmit buffer unavailable
CSR5.6: Receive interrupt
CSR5.11: General-purpose timer expired
CSR5.14: Early receive interrupt

CSR7.15 AIE Abnormal interrupt summary enable
When set, abnormal interrupts are enabled. Abnormal interrupts are listed below:
CSR5.1: Transmit process stopped
CSR5.5: Transmit underflow
CSR5.7: Receive buffer unavailable
CSR5.8: Receive process stopped
CSR5.10: Early transmit interrupt

CSR7.14 ERE Early receive interrupt enable
When both the ERE and NIE bits are set, early receive interrupt is enabled.

CSR7.11 GTE General-purpose timer overflow enable
When both the GTE and NIE bits are set, the general-purpose timer overflow interrupt is enabled.

CSR7.10 ETE Early transmit interrupt enable
When both the ETE and AIE bits are set, the early transmit interrupt is enabled.

CSR7.8 RSE Receive stopped enable
When both the RSE and AIE bits are set, the receive stopped interrupt is enabled.

CSR7.7 RUE Receive buffer unavailable enable
When both the RUE and AIE bits are set, the receive buffer unavailable is enabled.

CSR7.6 RIE Receive interrupt enable
When both the RIE and NIE bits are set, the receive interrupt is enabled.

CSR7.5 UNE Underflow interrupt enable
When both the UNE and AIE bits are set, the transmit underflow interrupt is enabled.

CSR7.2 TUE Transmit buffer unavailable enable
When both the TUE and NIE bits are set, the transmit buffer unavailable interrupt is enabled.

CSR7.1 TSE Transmit stopped enable
When both the TSE and AIE bits are set, the transmit process stopped interrupt is enabled.

CSR7.0 TIE Transmit interrupt enable
When both the TIE and NIE bits are set, the transmit interrupt is enabled.

26 Core10100 v5.1 Handbook

Register Maps

Table 28 Missed Frames and Overflow Counter Register (CSR8)

Bits [31:24] OCO FOC(10..7)

Bits [23:16] FOC(6..0) MFO

Bits [15:8] MFC(15..8)

Bits [7:0] MFC(7..0)

Note: The CSR8 register has unimplemented bits (shaded). If these bits are read they will return a predefined value.
Writing to these bits has no effect.

Table 29 Missed Frames and Overflow Counter Bit Functions

Bit Symbol Function

CSR8.28 OCO Overflow counter overflow (read-only)
Gets set when the FIFO overflow counter overflows.
Resets when the high byte (bits 31:24) is read.

CSR8.(27..17) FOC FIFO overflow counter (read-only)
Counts the number of frames not accepted due to the receive FIFO overflow. The
counter resets when the high byte (bits 31:24) is read.

CSR8.16 MFO Missed frame overflow
Set when a missed frame counter overflows.
The counter resets when the high byte (bits 31:24) is read.

CSR8.(15..0) MFC Missed frame counter (read-only)
Counts the number of frames not accepted due to the unavailability of the receive
descriptor.
The counter resets when the high byte (bits 31:24) is read. The missed frame counter
increments when the internal frame cache is full and the descriptors are not available.

Table 30 MII Management and Serial ROM Interface Register (CSR9)

Bits [31:24]

Bits [23:16] MDI MDEN MDO MDC

Bits [15:8]

Bits [7:0] SDO SDI SCLK SCS

Note: The CSR9 register has unimplemented bits (shaded). If these bits are read they will return a predefined value. Writing to
these bits has no effect.

Core10100 v5.1 Handbook 27

Software Interface

Table 31 MII Management and Serial ROM Register Bit Functions

Bit Symbol Function

CSR9.19 MDI MII management data in signal (read-only)
This bit reflects the sample on the MDI port during the read operation on the MII management
interface.

CSR9.18 MDEN MII management operation mode
1: Indicates that Core10100 reads the MII PHY registers

0: Indicates that Core10100 writes to the MII PHY registers
This register bit directly drives the top-level MDEN pin. It is intended to be the active low tristate
enable for the MDIO data output.

CSR9.17 MDO MII management write data
The value of this bit drives the MDO port when a write operation is performed.

CSR9.16 MDC MII management clock
The value of this bit drives the MDC port.

CSR9.3 SDO Serial ROM data output
The value of this bit drives the SDO port of Core10100.

CSR9.2 SDI Serial ROM data input
This bit reflects the SDI port of Core10100.

CSR9.1 SCLK Serial ROM clock
The value of this bit drives the SCLK port of Core10100.

CSR9.0 SCS Serial ROM chip select
The value of this bit drives the SCS port of Core10100.

The MII management interface can be used to control the external PHY device from the host side. It
allows access to all of the internal PHY registers via a simple two-wire interface. There are two signals on the
MII management interface: the MDC (Management Data Clock) and the MDIO (Management Data I/O).
The IEEE 802.3 indirection tristate signal defines the MDIO. Core10100 uses four unidirectional external
signals to control the management interface. For proper operation of the interface, the user must connect a
tristate buffer with an active low enable (inside or outside the FPGA), as shown in
Figure 4. The Serial ROM interface can be used to access an external Serial ROM device via CSR9. The
user can supply an external Serial ROM device, as shown in Figure 5. The Serial ROM can be used to
store user data, such as Ethernet addresses. Note that all access sequences and timing of the Serial
ROM interface are handled by the software.

If the Serial ROM interface is not used, the sdi input port should be connected to logic 0 and the output ports
(SCS, SCLK, and SDO) should be left unconnected.

MDIO

MDEN

MDO

MDC

MDI

Core10100

MDC

MII Management

Figure 4 I/O Tristate Buffer Connections

28 Core10100 v5.1 Handbook

Register Maps

Data Input

SCS

SCLK

SDO

Core10100

Data Output

Serial ROM

SDI

Chip Select

Clock

Figure 5 External_Serial_ROM Connections

Table 32 General-Purpose Timer and Interrupt Mitigation Control Register (CSR11)

Bits [31:24] CS TT NTP

Bits [23:16] RT NRP CON

Bits [15:8] TIM(15..8)

Bits [7:0] TIM(7..0)

Table 33 General-Purpose Timer and Interrupt Mitigation Control Bit Functions

Bit Symbol Function

CSR11.31 CS Cycle size
Controls the time units for the transmit and receive timers according to the following:

1:
MII 100 Mbps mode: 5.12 µs
MII 10 Mbps mode: 51.2 µs
0:
MII 100 Mbps mode: 81.92 µs
MII 10 Mbps mode: 819.2 µs

CSR11.(30..27) TT Transmit timer
Controls the maximum time that must elapse between the end of a transmit operation and
the setting of the CSR5.TI (transmit interrupt) bit.
This time is equal to TT × (16 × CS).
The transmit timer is enabled when written with a nonzero value. After each frame
transmission, the timer starts to count down if it has not already started. It is reloaded after
every transmitted frame.
Writing 0 to this field disables the timer effect on the transmit interrupt mitigation mechanism.
Reading this field gives the actual count value of the timer.

Core10100 v5.1 Handbook 29

Software Interface

Bit Symbol Function

CSR11.(26..24) NTP Number of transmit packets
Controls the maximum number of frames transmitted before setting the CSR5.TI
(transmit interrupt) bit.
The transmit counter is enabled when written with a nonzero value. It is decremented after
every transmitted frame. It is reloaded after setting the CSR5.TI bit.
Writing 0 to this field disables the counter effect on the transmit interrupt mitigation
mechanism.
Reading this field gives the actual count value of the counter.

CSR11.(23..20) RT Receive timer
Controls the maximum time that must elapse between the end of a receive operation and
the setting of the CSR5.RI (receive interrupt) bit.
This time is equal to RT × CS.
The receive timer is enabled when written with a nonzero value. After each frame reception,
the timer starts to count down if it has not already started. It is reloaded after every received
frame.
Writing 0 to this field disables the timer effect on the receive interrupt mitigation mechanism.
Reading this field gives the actual count value of the timer.

CSR11.(19..17) NRP Number of receive packets
Controls the maximum number of received frames before setting the CSR5.RI (receive
interrupt) bit.
The receive counter is enabled when written with a nonzero value. It is decremented after
every received frame. It is reloaded after setting the CSR5.RI bit.
Writing 0 to this field disables the timer effect on the receive interrupt mitigation mechanism.
Reading this field gives the actual count value of the counter.

CSR11.16 CON Continuous mode
1: General-purpose timer works in continuous mode

0: General-purpose timer works in one-shot mode
This bit must always be written before the timer value is written.

CSR11.(15..0) TIM Timer value
Contains the number of iterations of the general-purpose timer. Each iteration duration is as
follows:
MII 100 Mbps mode – 81.92 µs MII 10
Mbps mode – 819.2 µs

Frame Data and Descriptors
Descriptor / Data Buffer Architecture Overview

A data exchange between the host and Core10100 is performed via the descriptor lists and data buffers,
which reside in the system shared RAM. The buffers hold the host data to be transmitted or received by
Core10100. The descriptors act as pointers to these buffers. Each descriptor list should be constructed by
the host in a shared memory area and can be of an arbitrary size. There is a separate list of
descriptors for both the transmit and receive processes.
The position of the first descriptor in the descriptor list is described by CSR3 for the receive list and by
CSR4 for the transmit list. The descriptors can be arranged in either a chained or a ring structure. In a
chained structure, every descriptor contains a pointer to the next descriptor in the list. In a ring structure, the
address of the next descriptor is determined by CSR0.(6..2) (DSL—descriptor skip length).

30 Core10100 v5.1 Handbook

Frame Data and Descriptors

Every descriptor can point to up to two data buffers. When using descriptor chaining, the address of the
second buffer is used as a pointer to the next descriptor; thus, only one buffer is available. A frame can
occupy one or more data descriptors and buffers, but one descriptor cannot exceed a single frame. In a
ring structure, the descriptor operation may be corrupted if only one descriptor is used. Additionally, in the
ring structure, at least two descriptors must be set up by the host. In a transmit process, the host can give
the ownership of the first descriptor to Core10100 and causes the data specified by the first descriptor to
be transmitted. At the same time, the host holds the ownership of the second or last descriptor to itself. This
is done to prevent Core10100 from fetching the next frame until the host is ready to transmit the data
specified in the second descriptor. In a receive process, the ownership of all available descriptors, unless it
is pending processing by the host, must be given to Core10100.

Core10100 can store a maximum of two frames in the Transmit Data FIFO, including the frame waiting
inside the Transmit Data FIFO, the frame being transferred from the data interface into the Transmit Data
FIFO, and the frame being transmitted out via the MII interface from the Transmit Data FIFO.

Core10100 can store a maximum of four frames in the Receive Data FIFO, including the frame waiting
inside the Receive Data FIFO, the frame being transferred to the data interface from the Receive Data
FIFO, and the frame being received via the MII interface into the Receive Data FIFO.

OWN

CSR3/CSR4 – Descriptor List Base

DSL – Descriptor Skip

CSR
Shared

CSR
Buffer 1
Buffer 2

RIN

Buffer 1
Buffer 2

RIN
OWN

Buffer 1
RIN

OWN

Buffer 2

Data

Data

Data

Figure 6 Descriptors in Ring Structure

Core10100 v5.1 Handbook 31

Software Interface

CSR3/CSR4 – Descriptor List Base

CSR

Buffer 1
Buffer 2

RIN
OWN

Buffer 1
Buffer 2

RIN
OWN

Buffer 1
Buffer 2

RIN
OWN

Data

Data

Data

Shared

Figure 7 Descriptors in Chained Structure

Table 34 Receive Descriptors

RDES0 OWN STATUS

RDES1 CONTROL RBS2 RBS1

RDES2 RBA1

RDES3 RBA2

32 Core10100 v5.1 Handbook

Frame Data and Descriptors

Table 35 STATUS (RDES0) Bit Functions

Bit Symbol Function

RDES0.31 OWN Ownership bit
1: Core10100 owns the descriptor.

0: The host owns the descriptor.
Core10100 will clear this bit when it completes a current frame reception or when the data
buffers associated with a given descriptor are already full.

RDES0.30 FF Filtering fail
When set, indicates that a received frame did not pass the address recognition
process.
This bit is valid only for the last descriptor of the frame (RDES0.8 set), when the
CSR6.30 (receive all) bit is set and the frame is at least 64 bytes long.

RDES0.(29..16) FL Frame length
Indicates the length, in bytes, of the data transferred into a host memory for a given frame
This bit is valid only when RDES0.8 (last descriptor) is set and RDES0.14 (descriptor error)
is cleared.

RDES0.15 ES Error summary
This bit is a logical OR of the following bits:
RDES0.1: CRC error
RDES0.6: Collision seen
RDES0.7: Frame too long
RDES0.11: Runt frame
RDES0.14: Descriptor error
This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.14 DE Descriptor error
Set by Core10100 when no receive buffer was available when trying to store the
received data.
This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.11 RF Runt frame
When set, indicates that the frame is damaged by a collision or by a premature
termination before the end of a collision window.
This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.10 MF Multicast frame
When set, indicates that the frame has a multicast address. This
bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.9 FS First descriptor
When set, indicates that this is the first descriptor of a frame.

RDES0.8 LS Last descriptor
When set, indicates that this is the last descriptor of a frame.

Core10100 v5.1 Handbook 33

Software Interface

Bit Symbol Function

RDES0.7 TL Frame too long
When set, indicates that a current frame is longer than maximum size of 1,518 bytes,
as specified by 802.3.
TL (frame too long) in the receive descriptor has been set when the received frame is
longer than 1,518 bytes. This flag is valid in all receive descriptors when multiple
descriptors are used for one frame.

RDES0.6 CS Collision seen
When set, indicates that a late collision was seen (collision after 64 bytes following
SFD).
This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.5 FT Frame type
When set, indicates that the frame has a length field larger than 1,500 (Ethernet-type
frame). When cleared, indicates an 802.3-type frame.
This bit is valid only when RDES0.8 (last descriptor) is set.
Additionally, FT is invalid for runt frames shorter than 14 bytes.

RDES0.3 RE Report on MII error
When set, indicates that an error has been detected by a physical layer chip connected
through the MII interface.
This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.2 DB Dribbling bit
When set, indicates that the frame was not byte-aligned.
This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.1 CE CRC error
When set, indicates that a CRC error has occurred in the received frame.
This bit is valid only when RDES0.8 (last descriptor) is set.
Additionally, CE is not valid when the received frame is a runt frame.

RDES0.0 ZERO This bit is reset for frames with a legal length.

34 Core10100 v5.1 Handbook

Frame Data and Descriptors

Table 36 CONTROL and COUNT (RDES1) Bit

Bit Symbol Function

RDES1.25 RER Receive end of ring
When set, indicates that this is the last descriptor in the receive descriptor ring.
Core10100 returns to the first descriptor in the ring, as specified by CSR3 (start of
receive list address).

RDES1.24 RCH Second address chained
When set, indicates that the second buffer's address points to the next descriptor and not to
the data buffer.
Note that RER takes precedence over RCH.

RDES1.(21..11) RBS2 Buffer 2 size
Indicates the size, in bytes, of memory space used by the second data buffer. This number
must be a multiple of four. If it is 0, Core10100 ignores the second data buffer and fetches
the next data descriptor.
This number is valid only when RDES1.24 (second address chained) is cleared.

RDES1.(10..0) RBS1 Buffer 1 size
Indicates the size, in bytes, of memory space used by the first data buffer. This number must
be a multiple of four. If it is 0, Core10100 ignores the first data buffer and uses the second
data buffer.

Table 37 RBA2 (RDES3) Bit Functions

Bit Symbol Function

RDES3.(31..0) RBA2 Receive buffer 2 address
Indicates the length, in bytes, of memory allocated for the second receive buffer. This
number must be longword-aligned (RDES3.(1..0) = 00).

Table 38 Transmit Descriptors

TDES0 OWN STATUS

TDES1 CONTROL TBS2 TBS1

TDES2 TBA1

TDES3 TBA2

Core10100 v5.1 Handbook 35

Software Interface

Table 39 STATUS (TDES0) Bit Functions

Bit Symbol Function

TDES0.31 OWN Ownership bit
1: Core10100 owns the descriptor.

0: The host owns the descriptor.
Core10100 will clear this bit when it completes a current frame transmission or when the data
buffers associated with a given descriptor are empty.

TDES0.15 ES Error summary
This bit is a logical OR of the following bits:
TDES0.1: Underflow error
TDES0.8: Excessive collision error
TDES0.9: Late collision
TDES0.10: No carrier
TDES0.11: Loss of carrier
This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.11 LO Loss of carrier
When set, indicates a loss of the carrier during a transmission. This
bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.10 NC No carrier
When set, indicates that the carrier was not asserted by an external transceiver during the
transmission.
This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.9 LC Late collision
When set, indicates that a collision was detected after transmitting 64 bytes. This bit is
not valid when TDES0.1 (underflow error) is set.
This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.8 EC Excessive collisions
When set, indicates that the transmission was aborted after 16 retries. This
bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.(6..3) CC Collision count
This field indicates the number of collisions that occurred before the end of a frame
transmission.
This value is not valid when TDES0.8 (excessive collisions bit) is set. This
bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.1 UF Underflow error
When set, indicates that the FIFO was empty during the frame transmission. This
bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.0 DE Deferred
When set, indicates that the frame was deferred before transmission. Deferring occurs if the
carrier is detected when the transmission is ready to start.
This bit is valid only when TDES1.30 (last descriptor) is set.

36 Core10100 v5.1 Handbook

Frame Data and Descriptors

Table 40 CONTROL (TDES1) Bit Functions

Bit Symbol Function

TDES1.31 IC Interrupt on completion
Setting this flag instructs Core10100 to set CSR5.0 (transmit interrupt) immediately after
processing a current frame.
This bit is valid when TDES1.30 (last descriptor) is set or for a setup packet.

TDES1.30 LS Last descriptor
When set, indicates the last descriptor of the frame.

TDES1.29 FS First descriptor
When set, indicates the first descriptor of the frame.

TDES1.28 FT1 Filtering type
This bit, together with TDES0.22 (FT0), controls a current filtering mode. This
bit is valid only for the setup frames.

TDES1.27 SET Setup packet
When set, indicates that this is a setup frame descriptor.

TDES1.26 AC Add CRC disable
When set, Core10100 does not append the CRC value at the end of the frame. The
exception is when the frame is shorter than 64 bytes and automatic byte padding is
enabled. In that case, the CRC field is added, despite the state of the AC flag.

TDES1.25 TER Transmit end of ring
When set, indicates the last descriptor in the descriptor ring.

TDES1.24 TCH Second address chained
When set, indicates that the second descriptor's address points to the next descriptor and
not to the data buffer.
This bit is valid only when TDES1.25 (transmit end of ring) is reset.

TDES1.23 DPD Disabled padding
When set, automatic byte padding is disabled. Core10100 normally appends the PAD field
after the INFO field when the size of an actual frame is less than 64 bytes. After padding
bytes, the CRC field is also inserted, despite the state of the AC flag. When DPD is set, no
padding bytes are appended.

TDES1.22 FT0 Filtering type
This bit, together with TDES0.28 (FT1), controls the current filtering mode. This bit is
valid only when the TDES1.27 (SET) bit is set.

TDES1.(21..11) TBS2 Buffer 2 size
Indicates the size, in bytes, of memory space used by the second data buffer. If it is zero,
Core10100 ignores the second data buffer and fetches the next data descriptor.
This bit is valid only when TDES1.24 (second address chained) is cleared.

TDES1.(10..0) TBS1 Buffer 1 size
Indicates the size, in bytes, of memory space used by the first data buffer. If it is 0,
Core10100 ignores the first data buffer and uses the second data buffer.

Core10100 v5.1 Handbook 37

Software Interface

Table 41 TBA1 (TDES2) Bit Functions

Bit Symbol Function

TDES2.(31..0) TBA1 Transmit buffer 1 address
Contains the address of the first data buffer. For the setup frame, this address must be
longword-aligned (TDES3.(1..0) = 00). In all other cases, there are no restrictions on buffer
alignment.

Table 42 TBA2 (TDES3) Bit Functions

Bit Symbol Function

TDES3(31..0) TBA2 Transmit buffer 2 address
Contains the address of the second data buffer. There are no restrictions on buffer
alignment.

MAC Address and Setup Frames
The setup frames define addresses that are used for the receive address filtering process. These frames are
never transmitted on the Ethernet connection. They are used to fill the address filtering RAM. A valid setup
frame must be exactly 192 bytes long and must be allocated in a single buffer that is longword- aligned.
TDESI.27 (setup frame indicator) must be set. Both TDES1.29 (first descriptor) and TDES1.30 (last
descriptor) must be cleared for the setup frame. The FT1 and FT0 bits of the setup frame define the current
filtering mode.
Table 43 lists all possible combinations. Table 44 shows the setup frame buffer format for perfect filtering
modes. Table 45 shows the setup frame buffer for imperfect filtering modes. The setup should be sent to
Core10100 when Core10100 is in stop mode. When a RAM with more than 192 bytes is used for the
address filtering RAM, a setup frame with more than 192 bytes can be written into this memory to initialize
its contents, but only the first 192 bytes constitute the address filtering operation. While writing the setup
frame buffer in the host memory, the buffer size must be twice the size of the setup frame buffer.

Table 43 Filtering Type Selection

FT1 FT0 Description

0 0 Perfect filtering mode
Setup frame buffer is interpreted as a set of sixteen 48-bit physical addresses.

0 1 Hash filtering mode
Setup frame buffer contains a 512-bit hash table plus a single 48-bit physical address.

1 0 Inverse filtering mode
Setup frame buffer is interpreted as a set of sixteen 48-bit physical addresses.

1 1 Hash only filtering mode
Setup frame buffer is interpreted as a 512-bit hash table.

Table 44 Perfect Filtering Setup Frame Buffer

Byte Number Data Bits [31:16] Data Bits [15:0]

[1:0] {Physical Address [39:32],Physical Address [47:40]}

[3:2] {Physical Address [23:16],Physical Address [31:24]}

[5:4] {Physical Address [7:0],Physical Address [15:8]}

[15:12] xxxxxxxxxxxxxxxx Physical Address 1 (15:00)

38 Core10100 v5.1 Handbook

Frame Data and Descriptors

Byte Number Data Bits [31:16] Data Bits [15:0]

[19:16] xxxxxxxxxxxxxxxx Physical Address 1 (31:16)

[23:20] xxxxxxxxxxxxxxxx Physical Address 1 (47:32)

. . .

. . .

. . .
[171:168] xxxxxxxxxxxxxxxx Physical Address 14 (15:00)

[175:172] xxxxxxxxxxxxxxxx Physical Address 14 (31:16)

[179:176] xxxxxxxxxxxxxxxx Physical Address 14 (47:32)

[183:180] xxxxxxxxxxxxxxxx Physical Address 15 (15:00)

[187:184] xxxxxxxxxxxxxxxx Physical Address 15 (31:16)

[191:188] xxxxxxxxxxxxxxxx Physical Address 15 (47:32)

Table 45 Hash Table Setup Frame Buffer Format

Byte Number Data Bits [31:16] Data Bits [15:0]

[3:0] xxxxxxxxxxxxxxxx Hash filter (015:000)

[7:4] xxxxxxxxxxxxxxxx Hash filter (031:016)

[11:8] xxxxxxxxxxxxxxxx Hash filter (047:032)

. . .

. . .

. . .

[123:121] xxxxxxxxxxxxxxxx Hash filter (495:480)

[127:124] xxxxxxxxxxxxxxxx Hash filter (511:496)

[131:128] xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

[135:132] xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

. .

. .

. .

[159:156] xxxxxxxxxxxxxxxx Physical Address (15:00)

[163:160] xxxxxxxxxxxxxxxx Physical Address (31:16)

[167:164] xxxxxxxxxxxxxxxx Physical Address (47:32)

[171:168] xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

[175:172] xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

. .

. .

. .

[183:180] xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

187:184 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

191:188 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

Core10100 v5.1 Handbook 39

Software Interface

Internal Operation
The address bus width of the Receive/Transmit Data RAMs can be customized via the core parameters
RFIFODEPTH and TFIFODEPTH (Table 5). Those memory blocks must be at least as big as the longest
frame used on a given network. Core10100 stops to request new frame data when there are two frames
already in the Transmit Data RAM. It resumes the request for new frame data when there is either one or no
frame in the Transmit Data RAM.
At any given time, the Receive Data RAM can hold no more than four frames, including frames currently
under transfer.

DMA Controller
The DMA is used to control a data flow between the host and Core10100.
The DMA services the following types of requests from the Core10100 transmit and receive processes:
• Transmit request:

– Descriptor fetch
– Descriptor closing
– Setup packet processing
– Data transfer from host buffer to transmit FIFO

• Receive request:
• Descriptor fetch

– Descriptor closing
– Data transfer from receive FIFO to host buffer

The key task for the DMA is to perform an arbitration between the receive and transmit processes. Two
arbitration schemes are possible according to the CSR0.1 bit:
• 1: Round-robin arbitration scheme in which receive and transmit processes have equal priorities
• 0: The receive process has priority over the transmit process unless transmission is in progress.

In this case, the following rules apply:

– The transmit process request should be serviced by the DMA between two consecutive
receive transfers.

– The receive process request should be serviced by the DMA between two consecutive
transmit transfers.

Transfers between the host and Core10100 performed by the DMA component are either single data
transfers or burst transfers. For the data descriptors, the data transfer size depends on the core
parameter DATAWIDTH. The rule is that every descriptor field (32-bit) is accessed with a single burst. For
DATAWIDTH = 32, the descriptors are accessed with a single transaction; for DATAWIDTH = 16, the
descriptors are accessed with a burst of two 16-bit words, and for DATAWIDTH = 8, the descriptors are
accessed with a burst of four 8-bit words.
In the case of data buffers, the burst length is defined by CSR0.(13..8) (programmable burst length) and can
be set to 0, 1, 2, 4, 8, 16, or 32. When set to 0, no maximum burst size is defined, and the transfer ends
when the transmit FIFOs are full or the receive FIFOs are empty.

Transmit Process
The transmit process can operate in one of three modes: running, stopped, or suspended. After a
software or hardware reset, or after a stop transmit command, the transmit process is in a stopped state. The
transmit process can leave a stopped state only after the start transmit command.
When in a running state, the transmit process performs descriptor/buffer processing. When operating in a
suspended or stopped state, the transmit process retains the position of the next descriptor, that is, the
address of the descriptor following the last descriptor being closed. After entering a running state, that
position is used for the next descriptor fetch. The only exception is when the host writes the transmit
descriptor base address register (CSR4). In that case, the descriptor address is reset and the fetch is
directed to the first position in the list. Before writing to CSR4 the MAC must be in a stopped state.

40 Core10100 v5.1 Handbook

Internal Operation

When operating in a stopped state, the transmit process stopped (tps) output is HIGH. This output can be
used to disable the clkt clock signal external to Core10100. When both the tps and receive process
stopped (rps) outputs are HIGH, all clock signals except CLKCSR can be disabled external to Core10100.
The transmit process remains running, until one of the following events occurs:
• The hardware or software reset is issued. Setting the CSR0.0 (SWR) bit can perform the software reset.

After the reset, all the internal registers return to their default states. The current descriptor's position in
the transmit descriptor list is lost.

• A stop transmit command is issued by the host. This can be performed by writing 0 to the
CSR6.13 (ST) bit. The current descriptor's position is retained.

• The descriptor owned by the host is found. The current descriptor's position is retained.
• The transmit FIFO underflow error is detected. An underflow error is generated when the transmit FIFO is

empty during the transmission of the frame. When it occurs, the transmit process enters a suspended
state. Transmit automatic polling is internally disabled, even if it is enabled by the host by writing the TAP
bits. The current descriptor's position is retained.

Leaving a suspended state is possible in one of the following situations:

• A transmit poll demand command is issued. This can be performed by writing CSR1 with a nonzero
value. The transmit poll demand command can also be generated automatically when transmit
automatic polling is enabled. Transmit automatic polling is enabled only if the CSR0(19..17) (TAP) bits
are written with a nonzero value and when there was no underflow error prior to entering the suspended
state.

• A stop transmit command is issued by the host. This can be performed by writing 0 to the
CSR6.13 (ST) bit. The current descriptor's position is retained.

A typical data flow for the transmit process is illustrated in Figure 9. The events for the transmit process
typically happen in the following order:
1. The host sets up CSR registers for the operational mode, interrupts, etc.
2. The host sets up transmit descriptors/data in the shared RAM.
3. The host sends the transmit start command.
4. Core10100 starts to fetch the transmit descriptors.
5. Core10100 transfers the transmit data to Transmit Data RAM from the shared RAM.
6. Core10100 starts to transmit data on MII.

Transmit
Stopped

Transmit
Suspended

Transmit
Running

Start Transmit
Command

Stop
Transmit

Command

Descriptor
Unavailable

Pull Demand
 Command

Underflow
Error

Reset
Command

Stop Transmit
Command

Reset
Command

Figure 9 Transmit Process Transitions

Core10100 v5.1 Handbook 41

Software Interface

Host-SharedRAM
CSR_Interface

Data_Interface-SharedRAM
Data_Interface-TxFIFO_RAM

Transmit_Controller-MII
TxFIFO_RAM-Transmit_Controller

CSRs
Des+Data

CSR6
Tx Des Tx Data

Tx Data
Preamble Tx Data

Tx Data
CRC

Figure 10 Transmit Data Flow

Note: Refer to the Core10100 User Guide for an example of transmit data timing

Receive Process
FThe receive process can operate in one of three modes: running, stopped, or suspended. After a
software or hardware reset, or after a stop receive command, the receive process is in the stopped state. The
receive process can leave a stopped state only after a start receive command.
In the running state, the receiver performs descriptor/buffer processing. In the running state, the receiver
fetches from the receive descriptor list. It performs this fetch regardless of whether there is any frame on the
link. When there is no frame pending, the receive process reads the descriptor and simply waits for the
frames. When a valid frame is recognized, the receive process starts to fill the memory buffers pointed
to by the current descriptor. When the frame ends, or when the memory buffers are completely filled, the
current frame descriptor is closed (ownership bit cleared). Immediately, the next descriptor on the list is
fetched in the same manner, and so on.
When operating in a suspended or stopped state, the receive process retains the position of the next
descriptor (the address of the descriptor following the last descriptor that was closed). After entering a
running state, the retained position is used for the next descriptor fetch. The only exception is when the
host writes the receive descriptor base address register (CSR3). In that case, the descriptor address is
reset and the fetch is pointed to the first position in the list. Before writing to CSR3, the MAC must be in a
stopped state.
When operating in a stopped state, the rps output is HIGH. This output allows for switching the receive
clock clkr off externally. When both the rps and tps outputs are HIGH, all clocks except CLKCSR can be
externally switched off.
The receive process runs until one of the following events occurs:
• A hardware or software reset is issued by the host. A software reset can be performed by setting the

CSR0.0 (SWR) bit. After reset, all internal registers return to their default states. The current descriptor's
position in the receive descriptor list is lost.

• A stop receive command is issued by the host. This can be performed by writing 0 to the CSR6.1 (SR) bit.
The current descriptor's position is retained.

• The descriptor owned by the host is found by Core10100 during the descriptor fetch. The current
descriptor's position is retained.

Leaving a suspended state is possible in one of the following situations:
• A receive poll command is issued by the host. This can be performed by writing CSR2 with a nonzero

value.
• A new frame is detected by Core10100 on a receive link.
• A stop receive command is issued by the host. This can be performed by writing 0 to the CSR6.1 (SR) bit.

The current descriptor's position is retained.

42 Core10100 v5.1 Handbook

Internal Operation

The receive state machine goes into stopped state after the current frame is done if a STOP RECEIVE
command is given. It does not go in to a stopped state immediately.

Start Receive
Command

Stop
Receive
Command

Reset
Command

Receive
Stopped

Receive
Running

Descriptor
Unavailable

Stop Receive
 Command

Frame
Recognized

Pull Demand
Command

Reset
Command

Receive
Suspended

Figure 11 Receive Process Transitions

Note: Refer to the Core10100 User’s Guide for an example of receive timing.
A typical data flow in a receive process is illustrated in Figure 12. The events for the receive process
typically happen in the following order:

1. The host sets up CSR registers for the operational mode, interrupts, etc.
2. The host sets up receive descriptors in the shared RAM.
3. The host sends the receive start command.
4. Core10100 starts to fetch the transmit descriptors.
5. Core10100 waits for receive data on MII.
6. Core10100 transfers received data to the Receive Data RAM.
7. Core10100 transfers received data to shared RAM from Receive Data RAM.

Host-SharedRAM
CSR_Interface

Data_Interface-SharedRAM
Data_Interface-RxFIFO_RAM

RxFIFO_RAM-Receive_Controller
Receive_Controller-MII

CSRs CSR6
Rx Des

Rx Data

Preamble
Rx Data CRC

Rx Data

Rx Des

Rx Data CRC

Figure 12 Receive Data Flow

Interrupt Controller
The interrupt controller uses three internal Control and Status registers: CSR5, CSR7, and CSR11.
CSR5 contains the Core10100 status information. It has 10 bits that can trigger an interrupt. These bits are
collected in two groups: normal interrupts and abnormal interrupts. Each group has its own summary bit, NIS
and AIS, respectively. The NIS and AIS bits directly control the int output port of Core10100. Every status
bit in CSR5 that can source an interrupt can be individually masked by writing an appropriate value to CSR7
(Interrupt Enable register). Additionally, an interrupt mitigation mechanism is provided for reducing CPU
usage in servicing interrupts. Interrupt mitigation is controlled via CSR11.

Core10100 v5.1 Handbook 43

Software Interface

There are separate interrupt mitigation control blocks for the transmit and receive interrupts. Both of these
blocks consist of a 4-bit frame counter and a 4-bit timer. The operation of these blocks is similar for the
receive and transmit processes. After the end of a successful receive or transmission operation, an
appropriate counter is decremented and the timer starts to count down if it has not already started. An
interrupt is triggered when either the counter or the timer reaches a zero value. This allows Core10100 to
generate a single interrupt for a few received/transmitted frames or after a specified time since the last
successful receive/transmit operation.
It is possible to omit transmit interrupt mitigation for one particular frame by setting the Interrupt on
Completion (IC) bit in the last descriptor of the frame. If the IC bit is set, Core10100 sets the transmit
interrupt immediately after the frame has been transmitted.

The int port remains LOW for a single clock cycle on every write to CSR5. This enables the use of both
level- and edge-triggered external interrupt controllers.

INT

CSR11
Mitigation Control

CSR5
Status

CSR7
Interrupt Enable

TT = 0

NTP = 0

NRP = 0

RT = 0

TI

RI

TU

TU

ETI

ERI

GTE

NIS

AIS

TPS

RPS

UNF

TIE

RIE

TUE

RUE

ETE

ERE

GTE

NIE

AIE

TSE

RSE

UNE

Figure 13 Interrupt Scheme

44 Core10100 v5.1 Handbook

Internal Operation

General-Purpose Timer
Core10100 includes a 16-bit general-purpose timer to simplify time interval calculation by an external
host. The timer operates synchronously with the transmit clock clkt generated by the PHY device. This
gives the host the possibility of measuring time intervals based on actual Ethernet bit time.
The timer can operate in one-shot mode or continuous mode. In one-shot mode, the timer stops after
reaching a zero value; in continuous mode, it is automatically reloaded and continues counting down
after reaching a zero value.
The actual count value can be tested with an accuracy of ±1 bit by reading CSR11.(15..0). When writing
CSR11.(15..0), the data is stored in the internal reload register. The timer is immediately reloaded and starts
to count down.

Data Link Layer Operation

MII Interface
Core10100 uses a standard MII interface as defined in the 802.3 standard.
This interface can be used for connecting Core10100 to an external Ethernet 10/100 PHY device.

MII Interface Signals

Table 46 External PHY Interface Signals

IEEE 802.3
Signal Name

Core10100
Signal Name

Description

RX_CLK CLKR Clock for receive operation
This must be a 25 MHz clock for 100 Mbps operation or a 2.5 MHz clock for 10 Mbps
operation.

RX_DV RX_DV Receive data valid signal
The PHY device must assert RX_DV when a valid data nibble is provided on the RXD
signal.
The RX_DV signal must be synchronous to the CLKR receive clock.

RX_ER RX_ER Receive error
If RX_ER is asserted during Core10100 reception, the frame is received and status of the
frame is updated with RX_ER.
The RX_ER signal must be synchronous to the CLKR receive clock.

RXD RXD Receive data recovered and decoded by PHY The
RXD[0] signal is the least significant bit.
The RXD bus must be synchronous to the CLKR receive clock.

TX_CLK CLKT Clock for transmit operation
This must be a 25 MHz clock for 100 Mbps operation or a 2.5 MHz clock for 10 Mbps
operation.

TX_EN TX_EN Transmit enable
When asserted, indicates valid data for the PHY on TXD. The
TX_EN signal is synchronous to the CLKT transmit clock.

TXD TXD Transmit data
The TXD[0] signal is the least significant bit.
The TXD bus is synchronous to the CLKT transmit clock.

Core10100 v5.1 Handbook 45

Software Interface

IEEE 802.3
Signal Name

Core10100
Signal Name

Description

COL COL Collision detected
This signal must be asserted by the PHY when a collision is detected on the medium. It is
valid only when operating in a half-duplex mode. When operating in a full-duplex mode,
this signal is ignored by Core10100.
The COL signal is not required to be synchronous to either CLKR or CLKT. The
COL signal is sampled internally by the CLKT clock.

CRS CRS Carrier sense
This signal must be asserted by the PHY when either a receive or a transmit medium is
non-idle.
The CRS signal is not required to be synchronous to either CLKR or CLKT.

TX_ER TX_ER Transmit error
The current version of Core10100 has the TX_ER signal statically tied to logic 0 (no
transmit errors).

MDC MDC MII management clock
This signal is driven by the CSR9.16 bit.

MDIO MDI MII management data input
The state of this signal can be checked by reading the CSR9.19 bit.

MDO MII management data output
This signal is driven by the CSR9.18 bit.

MII Receive Operation

CLKR

RX_DV

RX_ER

Read Points
Error Detected

RXD[3:0] data data data data

Figure 14 MII Receive Operation

46 Core10100 v5.1 Handbook

Internal Operation

MII Transmit Operation

CLKT

TX_EN

COL

TXD[3:0]

Write Points
Collision Detected

data data data data
CRS

Deferring

Figure 15 MII Transmit Operation

Frame Format
Core10100 supports the Ethernet frame format shown in Figure 16 (“B” indicates bytes). The standard
Ethernet frames (DIX Ethernet), as well as IEEE 802.3 frames, are accepted.

PREAMBLE SFD DA SA LENGTH /
TYPE DATA PAD FCS

7B 1B 6B 6B 2B

46B – 1500B

4B

Figure 16 Frame Format

Table 47 Frame Field Usage
Field Width

(bytes)
Transmit Operation Receive Operation

PREAMBLE 7 Generated by Core10100 Stripped from received data Not
required for proper operation

SFD 1 Generated by Core10100 Stripped from received data

DA 6 Supplied by host Checked by Core10100 according to current
address filtering mode and passed to host

SA 6 Supplied by host Passed to host

LENGTH/ TYPE 6 Supplied by host Passed to host

DATA 0-1500 Supplied by host Passed to host

PAD 0-46 Generated by Core10100 when CSR.23
(DPD) bit is cleared and data supplied
by host is less than 64 bytes

Passed to host

FCS 4 Generated by Core10100 when
CSR.26 bit is cleared

Checked by Core10100 and passed to host

Core10100 v5.1 Handbook 47

Software Interface

Collision Handling
Collision detection is performed via the col input port. If a collision is detected before the end of the
PREAMBLE/ SFD, Core10100 completes the PREAMBLE/SFD, transmits the JAM sequence, and
initiates a backoff computation. If a collision is detected after the transmission of the PREAMBLE and
SFD, but prior to 512 bits being transmitted, Core10100 immediately aborts the transmission, transmits
the JAM sequence, and then initiates a backoff. If a collision is detected after 512 bits have been
transmitted, the collision is termed a late collision. Core10100 aborts the transmission and appends the
JAM sequence. The transmit message is flushed from the FIFO. Core10100 does not initiate a backoff
and does not attempt to retransmit the frame when a late collision is detected.

Core10100 uses a “truncated binary exponential backoff” algorithm for backoff computing, as defined in
the IEEE 802.3 standard and outlined in Figure 17.

Backoff processing is performed only in half-duplex mode. In full-duplex mode, collision detection is
disabled.

Wait for End of
Transmission

Normal
Collision?

Increment Attempt

Attempt < 16

Attempt < 10

ran = random(0..2attempt – 1) ran = random(0..210 – 1)

Wait for ran * Slot Time

Transmission
Ready

Set TDES0.8
(EC) Excessive Collision

Reset Attempt

Yes

No

Yes

No

Yes

No

Yes No

Late Collision?
Set TDES0.9
(LC) Late Collision

Yes

No

Next Transmission
Attempt

Figure 17 Backoff Process Algorithms

48 Core10100 v5.1 Handbook

Internal Operation

Deferring
The deferment algorithm is implemented per the 802.3 specification and outlined in Figure 18. The
InterFrame Gap (IFG) timer starts to count whenever the link is not idle. If activity on the link is detected
during the first 60 bit times of the IFG timer, the timer is reset and restarted once activity has stopped.
During the final 36 bit times of the IFG timer, the link activity is ignored.
Carrier sensing is performed only when operating in half-duplex mode. In full-duplex mode, the state of the
CRS input is ignored.

Reset IFG Timer

Transmit Ready
and Not in Backoff?

Transmit Frame

Yes

No

Yes

No

Yes

No

Yes

No

IFG Timer =
60 Bit Times?

CRS = 0?

CRS = 0?

IFG Timer =
96 Bit Times?

Yes

No

Figure 18 Deferment Process Algorithms

Core10100 v5.1 Handbook 49

Software Interface

Receive Address Filtering
There are three kinds of addresses on the LAN: the unicast addresses, the multicast addresses, and the
broadcast addresses. If the first bit of the address (IG bit) is 0, the frame is unicast, i.e., dedicated to a
single station. If the first bit is 1, the frame is multicast, that is, destined for a group of stations. If the
address field contains all ones, the frame is broadcast and is received by all stations on the LAN.

When Core10100 operates in perfect filtering mode, all frames are checked against the addresses in the
address filtering RAM. The unicast, multicast, and broadcast frames are treated in the same manner.

When Core10100 operates in the imperfect filtering mode, the frames with the unicast addresses are
checked against a single physical address. The multicast frames are checked using the 512-bit hash
table. To receive the broadcast frame, the hash table bit corresponding to the broadcast address CRC
value must be set. Core10100 applies the standard Ethernet CRC function to the first six bytes of the
frame that contains a destination address. The least significant nine bits of the CRC value are used to
index the table. If the indexed bit is set, the frame is accepted. If this bit is cleared, the frame is rejected. The
algorithm is shown in Figure 19.

DAIG

802.3 Frame Destination Address

512-Bit Hash Table

One Physical Address

Multicast
Address?

Yes

No

47 0 47
CRC Generator

9

Hash Table
Index

08

Figure 19 Filtering with One Physical Address and the Hash Table

It is important that one bit in the hash table corresponds to many Ethernet addresses. Therefore, it is
possible that some frames may be accepted by Core10100, even if they are not intended to be received.
This is because some frames that should not have been received have addresses that hash to the same bit
in the table as one of the proper addresses. The software should perform additional address filtering to
reject all such frames. The receive address filtering RAM must be enabled using the ADDRFILTER core
parameter to enable the above functionality.

50 Core10100 v5.1 Handbook

Internal Operation

Steps for Calculating CRC with Hash Filtering
Following are the steps the core is using, and Testbench/Software needs to follow. These are the steps for
calculating CRC with which the hash filter logic of the DUT accepts the frames properly:
1. Initial value of the CRC is 0xFFFFFFFF.
2. XOR the incoming data bit with the 31st bit of the current CRC value.
3. Left shift the current CRC value by one bit.
4. Check the XORed value from step 2. If this value is 1'b1 then XOR the current CRC value with the

generator polynomial (0x4C11DB7).
5. Insert the bit value result from step 2 at the 0th bit location of the current CRC value.
6. Repeat steps 2, 3, 4, and 5 until the CRC is calculated for all the bits of the data.MII_TO_RMII

Internal Architecture

External Address Filtering Interface
An external address filtering interface is provided to extend the internal filtering capabilities of Core10100.
The interface allows connection of external user-supplied address checking logic. All signals from the
interface are synchronous to the CLKR clock.
If the external address filtering is not used, all input ports of the interface must be grounded and all output
ports must be left floating.

Table 48 External Address Interface Description

Core10100
Signal Name

Type Description

MATCH In External address match
When HIGH, indicates that the destination address on the MATCHDATA port is recognized
by the external address checking logic and that the current frame should be received by
Core10100.
When LOW, indicates that the destination address on the MATCHDATA port is not
recognized and that the current frame should be discarded.
Note that the MATCH signal should be valid only when the MATCHVAL signal is HIGH.

MATCHVAL In External address match valid
When HIGH, indicates that the MATCH signal is valid.

MATCHEN Out External match enable
When HIGH, indicates that the MATCHDATA signal is valid. The MATCHEN output should
be used as an enable signal for the external address checking logic. It is HIGH for at least
four CLKR clock periods to allow for latency of external address checking logic.

MATCHDATA Out External address match data
The MATCHDATA signal represents the 48-bit destination address of the received frame.
Note that the MATCHDATA signal is valid only when matchen signal is HIGH.

Core10100 v5.1 Handbook 51

Software Interface

MII to RMII Interface
The 25 MHz transmit clock (CLKT) and receive clock (CLKR) are derived from the 50 MHz
RMII_CLK(REF_CLK) (divide by 2 for 100 Mbps operation). The 2.5 MHz transmit clock (CLKT) and receive
clock (CLKR) are derived from the 50 MHz RMII_CLK (divide by 20 for 10 Mbps operation). The internal
clock net CLK_TX_RX must be assigned to a global clock network. The CSR6 bit 22, which is connected to
the SPEED port in the MII_RMII block, will select the clock frequency as either 2.5 MHz or 25 MHz.
The data width on the MII interface is 4 bits for both transmit and receive. The data width on the RMII
interface is 2 bits for both transmit and receive. The CRS and RX_DV signals are decoded from
CRS_DV. The COL signal is derived from AND-ing together the TX_EN and the decoded CRS signal
from the CRS_DV line in half duplex mode.

TX_PIPELINE

Divide by 20

Divide by 2

RX_PIPELINE

SPEED

0

1

CLKT

CLKR

REF_CLK(50 MHz)

REF_CLK

REF_CLK

TXD[1:0]

RXD[1:0]

MII_TXD[3:0]

MII_RXD[3:0]

25 MHz

2.5 MHz

Synchronizer
and Decoder CRS_DV

CRS

RX_DV

CLKR
RX_ER

MII_RX_ER

CLKT
MII_TX_EN

TX_EN

MII_TX_EN

CRS
COL

Synchronizer

CLK_TX_RX

Figure 20 MII_TO_RMII Internal Architecture

52 Core10100 v5.1 Handbook

Interface Timing

Core10100—CSR Interface
CSR Read/Write Operation

The CSR read and write operations are synchronous to the positive edge of the CLKCSR signal and are
illustrated in Figure 21. Read operations require that the data be read in the same clock cycle in which the
CSRREQ signal is set to logic 1.

CLK

CSRREQ

CSRRW

CSRBE

CSRADDR

CSRDATAI

CSRDATAO

Read

DATA

ADDR

BE

DATA

ADDR

BEBE

ADDR

DATA

WriteRead

Figure 21 CSR Read/Write Operation

Core10100—Data Interface
The data interface is used for data transfers between Core10100 and external shared system memory. It is a
master via the DMA interface; i.e., Core10100 operates as an initiator on this data interface. The
interface operates synchronously with the CLKDMA clock supplied by the system. The data width of the
interface can be changed using the core parameter DATAWIDTH. Possible DATAWIDTH values are 8, 16,
and 32. There are two data exchange types that can be initiated and performed by Core10100 via the DMA
interface. The first data exchange type is the transmit and receive descriptors. These are set up by the host
and fetched by the DMA interface to instruct Core10100 to exchange the Ethernet frame data in specified
locations of shared RAM. The second data exchange type is the Ethernet data type.

Data Interface Write Operation
The data interface supports single or burst data transfer. The writes are operated on the positive edge of the
clock CLKDMA. The write operation starts when the data interface sets DATAREQ to HIGH, and then the
data interface waits until DATAACK from the host interface is set to HIGH (which indicates that the host is
ready to receive the writes). A byte enable signal DATAEOBE indicates the valid bytes on each write. The
signal DATAEOB indicates to the hosts that it is the end of a burst transfer. The signal DATAACK can
be asserted or deasserted at any clock cycle; even in the middle of a burst transfer.

Core10100 v5.1 Handbook 53

Interface Timing

CLK

DATAREQ

DATARW

DATAEOB

DATAEOBE

DATAADDR

DATAI

DATAO

Write

End of

DATAACK

a+ a+a a

b b

Write

data[a+1] data[a+2]data[a] data[a]

Figure 22 Core10100 Host Data Write Operation

Data Interface Read Operation
The data interface supports single or burst data transfer. The reads are operated on the positive edge of the
clock CLKDMA. The read operation starts when the data interface sets DATAREQ to HIGH, and then the data
interface waits until DATAACK from the host interface is set to HIGH (which indicates that the data is ready to
be received by the data interface). A byte enable signal, DATAEOBE, indicates the valid bytes on each
read request. The signal DATAOB indicates to the hosts that it is the end of a burst transfer. DATAACK
can be asserted or deasserted at any clock cycle, even in the middle of a burst transfer.

CLK

DATAREQ

DATARW

DATAEOB

DATAEOBE

DATAADDR

DATAI

DATAO

Read

End of

DATAACK

a+ a+a a

b b

data[a] data[a+1] data[a+2] data[a]

Read

Figure 23 Host Data Read Operation

54 Core10100 v5.1 Handbook

Core10100-RMII Interface

Core10100-RMII Interface
Core10100 implements the MII-to-RMII interface, which is compliant with the RMII specification. Full timing
diagrams are available in the RMII specification: www.national.com/appinfo/networks/files/rmii_1_2.pdf

Clock and Reset Control
Clock Controls

As shown in Figure 24 there are four clock domains in the design:

• The TC and BD components operate synchronously with the CLKT clock supplied by the MII PHY device.
This is a 2.5 MHz clock for 10 Mbps operation or a 25 MHz clock for 100 Mbps operation.

• The RC operates synchronously with the CLKR clock supplied by the MII PHY device. This is a 2.5 MHz
clock for 10 Mbps operation or a 25 MHz clock for 100 Mbps operation.

• The TFIFO, RFIFO, TLSM, RLSM, and DMA components operate synchronously with the CLKDMA
global clock supplied by the system.

• The CSR operates synchronously with the CLKCSR clock supplied by the system.

CLKR

CLKT

CLKDMA

TFIFO
RFIFO
TLSM
RLSM
DMA

TC
BD

RC

CSRCLKCSR RSTC

Figure 24 Clock Domains and Reset

All clock signals are independent and can be asynchronous one to another. If needed, the CLKCSR and
CLKDMA clock domains can be connected together with the same system clock signal in the user's
system to consolidate global clock resources, or they can be from independent clock sources.
A minimum frequency of clock CLKCSR is required for proper operation of the transmit, receive, and
general-purpose timers. The minimum frequency for CLKCSR must be at least the CLKT frequency divided
by 64. For proper operation of the receive timer, the CLKCSR frequency must be at least the CLKR
frequency divided by 64. If the clock frequency conditions described above are not met, do not use
transmit interrupt mitigation control, receive interrupt mitigation control, or the general-purpose timer.
Appropriate clocks should be also supplied when the hardware reset operation is performed.

Reset Control

Hardware Reset
Core10100 contains a single input RSTCSR signal. This signal is sampled in the RSTC component by clock
CLKCSR. The RSTC component generates an internal asynchronous reset for every clock domain in
Core10100. The internal reset is generated by the input RSTCSR and software reset. The internal reset
remains active until the circuitry of all clock domains is reset.
The external reset signal must be active (HIGH) for at least one period of clock CLKCSR in the user’s
design. The minimum recovery time for a software reset is two CLKCSR periods plus one maximum clock
period among CLKDMA, CLKT, and CLKR.

Core10100 v5.1 Handbook 55

http://www.national.com/appinfo/networks/files/rmii_1_2.pdf

Interface Timing

Software Reset
Software reset can be performed by setting the CSR0.0 (SWR) bit. The software reset will reset all internal
flip-flops.

Timing Constraints
Microsemi recommends that correct timing constraints be used for the Synthesis and Layout stages of the
design process. In particular, the cross-clock-domain paths must be constrained as follows:
• FROM “CLKDMA” TO “CLKT” uses clock period of CLKDMA
• FROM “CLKT” TO “CLKDMA” uses clock period of CLKT
• FROM “CLKDMA” TO “CLKR” uses clock period of CLKDMA
• FROM “CLKR” TO “CLKDMA” uses clock period of CLKR
• FROM “CLKCSR” TO “CLKT” uses clock period of CLKCSR
• FROM “CLKT” TO “CLKCSR” uses clock period of CLKT
• FROM “CLKCSR” TO “CLKR” uses clock period of CLKCSR
• FROM “CLKR” TO “CLKCSR” uses clock period of CLKR

56 Core10100 v5.1 Handbook

Tool Flows

Licensing
Core10100 is licensed in two ways: Obfuscated and RTL.

Obfuscated
Complete RTL code is provided for the core, enabling the core to be instantiated with SmartDesign.
Simulation, Synthesis, and Layout can be performed with Libero® Integrated Design Environment (IDE). The
RTL code for the core is obfuscated,1 and the some of the testbench source files are not provided. They
are precompiled into the compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.
The core can be configured using the configuration GUI within SmartDesign, as shown in Figure 25.

SmartDesign
 Core10100 is available through the Libero SoC IP Catalog. Download it from a remote web-based
repository and install into your local vault to make it ready to use. Once installed in the Libero software, the
core can be instantiated, configured, connected, and generated using the SmartDesign tool.
For more information on using SmartDesign to instantiate and generate cores, refer to the Using DirectCore
in Libero® System-on-Chip (SoC) User Guide or consult the Libero online help.

Configuring Core10100 in SmartDesign
The Core10100 configuration GUI takes up a large amount of screen area when it is sized to show all
configuration options. Figure 25 shows the top portion of the configuration GUI.

1 Obfuscated means the RTL source files have had formatting and comments removed, and all instance and net names have been replaced
with random character sequences.

Core10100 v5.1 Handbook 57

http://www.microsemi.com/soc/documents/libero_ug.pdf
http://www.microsemi.com/soc/documents/libero_ug.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132044

Tool Flows

Figure 25 Core10100 Configuration within SmartDesign

"Timing Constraints" details the recommended timing constraints that should be used during Synthesis and
compile

58 Core10100 v5.1 Handbook

Testbench Operation and Modification

Testbench Operation and Modification
An example user testbench is included with the Obfuscated and RTL releases of Core10100. The
Obfuscated and RTL releases provide the precompiled ModelSim model, as well as the source code for the
user testbench, to ease the process of integrating the Core10100 macro into a design and verifying it. A block
diagram of the example user design and testbench is shown in Figure 26.

Core10100
User Testbench

Simulated
Connection

Behavioral
µController

Behavioral
µController

Shared RAM

CSR and DMA
Interface

CHIPMAC

Shared RAM

umac1:chipmac

MII

CSR and DMA
Interface

CHIPMACMII

umac2:chipmac

Figure 26 Core10100 User Testbench

The user testbench includes a simple example design that serves as a reference for users who want to
implement their own designs. RTL source code for the user testbench shown in Figure 26 is included in the
source directory for the Obfuscated and RTL releases of Core10100.

The testbench for the example user design implements a subset of the functionality tested in the
verification testbench, described in the previous chapter. Conceptually, as shown in Figure 26, two
instantiations of the Core10100 core are connected via simulated connections in the user testbench.
Example transmit and receive between the two Core10100 units is demonstrated by the user testbench so
you can gain a basic understanding of how to use the core.

The source code for the user testbench contains the same example wrapper, CHIPMAC, used in the
verification testbench.

The user testbench consists of two cores: umac1 and umac2. In the example, umac1 transmits a 64-byte
frame to umac2. To do so, the user testbench exercises the following steps:

For umac1:
1. Write several CSR registers to set up the operation mode.
2. Write two transmit descriptors into shared RAM (uram1).
3. Write the 64-byte data into shared RAM (uram1). The data consists of a sequence: 0, 1, 2, …, 63.
4. Turn on transmission.
5. Wait for the transmit interrupt.
6. Read the status register CSR5.
7. Clear the interrupt flags.

Core10100 v5.1 Handbook 59

Testbench Operation and Modification

For umac2:
1. Write several CSR registers to set up the operation mode.
2. Write two receive descriptors into shared RAM (uram2).
3. Turn on receiving.
4. Wait for the receive interrupt.
5. Read the status register CSR5.
6. Check received data to match data sent by umac1.
7. Clear the interrupt flags.
The operations of umac1 and umac2 are concurrent.

60 Core10100 v5.1 Handbook

System Operation

This chapter provides various hints to ease the process of implementation and integration of Core10100 into
your own design.
Figure 27 and Figure 28 show the way which Core10100 is connected to both MII and RMII Ethernet PHY
devices. In MII, the CLKT and CLKR will be running at 25 MHz or 2.5 MHz depending on the Speed mode
(10/100 Mbps) gets selected for the transmit and receive control logic .These clocks will be provided by the
PHY device through its own clock buffers(CLKINT).
In RMII ,the PHY device will be providing a 50 MHz reference clock (REFCLK) to the Core10100 through a
clock buffer .The Core10100 internally generates the 25 MHz or 2.5 MHz clocks depending on the speed
mode gets selected for its transmit and receive logics .
In both MII and RMII, Host communicates to Core10100 through the CSR and DATA Interface for configuring,
controlling, and data transfers. Figure 27 and Figure 28 also explains the way which management signals are
connected for the auto negotiation operation between PHY device and Core10100.

HOST
MODULE CORE10100

CLKINT

CLKINT

MII
PHY Device

CLKT

CLKR

MII TX CLK

MDC

MDI

MDEN

MDO MDIO

MII Interface

Host Address Filter Interface

General Host Interface

Host Data Interface

CLK_DMA

Host CSR Interface

CLK_CSR
MII RX CLK

Figure 27 Example System Using Core10100 with MII Interface

Core10100 v5.1 Handbook 61

System Operation

HOST
MODULE CORE10100

CLKINT

RMII
PHY Device

RMII_CLK RMIII REFCLK

MDC

MDI

MDEN

MDO MDIO

RMII Interface

Host Address Filter Interface

General Host Interface

Host Data Interface

CLK_DMA

Host CSR Interface

CLK_CSR

Figure 28 Example System Using Core10100 with RMII Interface

62 Core10100 v5.1 Handbook

Transmit and Receive Functional Timing
Examples

Transmit Examples
Transmit Overview

A typical Core10100 transmit is shown in Figure 29.
1. Host sends the transmit command and Core10100 enters the transmit process.
2. Core10100 starts to request the descriptors.
3. Core10100 starts to request frame data and write them into the transmit FIFO.
4. Core10100 starts to transmit a frame on the MII interface. A typical transmit undergoes these four

processes.
In this chapter, more detailed dataflow diagrams are provided to illustrate the timing information for the
above four processes.

TPS
DATAREQ
DATARW

DATAADDR
TWE

TWADDR
TWDATA
TRADDR
TRDATA

TX_EN
TXD

FFFFFFFF

XXXXXXXX

F

(1) (2) (3) (4)

Figure 29 Typical Transmit Dataflow

Core10100 v5.1 Handbook 63

Transmit and Receive Functional Timing Examples

Core10100 Enters Transmit Process
The block CSR performs this operation.

1. Host sets the CSR register CSR6.13 ST to start transmit.
2. The tps signal goes LOW after one CLKCSR cycle, which indicates that Core10100 enters the transmit

process.

CSRACK
CSRBE[3:0]

CSRDATAI[31:0]
CSRADDR[7:0]

CLKCSR
TPS

CSRREQ
CSRRW

CSR6.13ST
30

(1) (2)(1) (2)

Figure 30 Enters Transmit Process

Core10100 Starts to Request Transmit Descriptors
Figure 31 illustrates operations between TPS going LOW and a transmit descriptor start.

1. Host sends the transmit start command.
2. Core10100 starts to fetch the first descriptor.
Note: t0 = 4 × CLKDMA period + 3 × CLKCSR period + z.
Where z is 2 × CLKDMA period if CLKDMA period is greater than CLKCSR period, or z is 2 × CLKCSR
period if CLKCSR period is greater than CLKDMA period. Delay z is the result of handshaking between CSR
clock domain and other domains in the design.

CLKDMA
CLKCSR

TPS
DATAACK
DATAREQ
DATARW

DATAEOB
DATAI[31:0]

DATAADDR[31:0]
DATAO[31:0]

80000000 600007FF
FFFFFFFF 00003004
40000200

(1) (2)
t0

Figure 31 Core10100 Starts Transmit Descriptor Requests

64 Core10100 v5.1 Handbook

Transmit Descriptor and Data Fetches

Transmit Descriptor and Data Fetches
Transmit Descriptor Fetch in 32-Bit Mode
1. Read the first 32-bit word of transmit descriptor.
2. Read the second 32-bit word of transmit descriptor.
3. Read the third 32-bit word of transmit descriptor.
4. Read the first 32-bit data fetch and write into transmit FIFO.
5. Read the second 32-bit data fetch and write into transmit FIFO.

CLKDMA
CLKT

DATAACK
DATAREQ
DATARW

DATAI[31:0]
DATAADDR[31:0]

TWE
TWADDR[8:0]

TWDATA[31:0]
TRADDR[8:0]

TRDATA[31:0]
TX_EN

TXD[3:0]

80000000 600007FF 00000000
FFFFFFFF 00003004 00003008

000
00000000
000
XXXXXXXX

F

(1) (2) (3) (4)
(5)

Figure 32 Transmit Descriptor Fetch in 32-Bit Mode

Note: An extra cycle is inserted between any two descriptor fetches.

Transmit Descriptor and Data Fetch in 16-Bit Mode
1. Read the first 16-bit word of transmit descriptor.
2. Read the second 16-bit word of transmit descriptor.
3. Read the third 16-bit word of transmit descriptor.
4. Read the fourth 16-bit word of transmit descriptor.
5. Read the fifth 16-bit word of transmit descriptor.
6. Read the sixth 16-bit word of transmit descriptor.
7. Read the first 16-bit data fetch and write into transmit FIFO.
8. Read the second 16-bit data fetch and write into transmit FIFO.
9. Read the third 16-bit data fetch and write into transmit FIFO.
10. Read the fourth 16-bit data fetch and write into transmit FIFO.

Core10100 v5.1 Handbook 65

Transmit and Receive Functional Timing Examples

CLKDMA
DATAACK
DATAREQ
DATARW

DATAEOB
DATAI[15:0]

DATAADDR[31:0]
TWE

TWADDR[9:0]
TWDATA[15:0]

0000 07FF 0000
FFFF FFFF

000
0000

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

(9)
(10)

Figure 33 Transmit Descriptor Fetch in 16-Bit Mode

Transmit Descriptor and Data Fetch in 8-Bit Mode
1. Four reads of the first to fourth 8-bit words of the transmit descriptor.
2. Four reads of the fifth to eighth 8-bit words of the transmit descriptor.
3. Four reads of the ninth to twelfth 8-bit words of the transmit descriptor.
4. Read the first 8-bit data fetch and write into the transmit FIFO.
5. Read the second 8-bit data fetch and write into the transmit FIFO.
6. Read the third 8-bit data fetch and write into the transmit FIFO.
7. Read the fourth 8-bit data fetch and write into the transmit FIFO.

CLKDMA
DATAACK
DATAREQ
DATARW

DATAEOB
DATAI[7:0]

DATAADDR[31:0]
TWE

TWADDR[10:0]

00 FF 00

000

(1) (2) (3) (4)
(5)

(6)
(7)

Figure 34 Transmit Descriptor Fetch in 8-Bit Mode

66 Core10100 v5.1 Handbook

Transmit Descriptor and Data Fetches

Core10100 Starts to Transmit on MII
1. Core10100 starts to write to the Transmit Data RAM.
2. Core10100 reaches the transmit FIFO level (see Table 18). Figure 35 shows that the transmit FIFO

threshold is set at 64 bytes, with sixteen 32-bit word writes.
3. Transmit starts on MII.
Note: t0 = CLKDMA period × FIFO threshold level / DATAWIDTH × 8 or

t0 = CLKDMA period × frame size / DATAWIDTH × 8 in store and forward mode, and
t1 = 3 × CLKDMA period + 5 × CLKT period.

CLKDMA
CLKT
TWE

TWDATA[31:0]
TWADDR[8:0]
TRADDR[8:0]

TRDATA[31:0]
TX_EN

TXD[3:0]

0000 0000
000
000

00000000

F

1. 2. 3.
t0 t1

Figure 35 Transmit FIFO Threshold and Start of Transmit on MII

Transmit on MII
1. Core10100 starts to transmit the preamble and SFD.
2. Core10100 sends the read address to the External Transmit Data RAM.
3. Core10100 reads the first 32 bits of data.
4. Core10100 starts to transmit the data.

CLKT
TRADDR[8:0]

TRDATA[31:0]
TX_EN

TXD[3:0]

000 001 002 003
00000000 00000004 00000008

5 0 0

(1) (4)
(3)

(2)

F

Figure 36 Transmit on MII

Transmit on MII with 32-Bit Transmit Data RAM
(1), (2) Core10100 sends out requested read addresses. t0 is eight cycles.
(3), (4) t1 is the time between Core10100 sending out a read address request and the appearance of the
requested data on MII.

Core10100 v5.1 Handbook 67

Transmit and Receive Functional Timing Examples

(1) (2) (3) (4)

CLKT
TX_EN

TRADDR[8:0]
TRDATA[31:0]

TXD[3:0]

001 002 003 004

5 0 4 0 8 0 C
00000004 00000008 0000000C 00000010

t0 t1

Figure 37 Transmit on MII with 32-Bit Transmit Data RAM

Transmit on MII with 16-Bit Transmit Data RAM
(1), (2) Core10100 sends out requested read addresses. t0 is four cycles.
(3), (4) t1 is the time between Core10100 sending out a read address request and the appearance of the
requested data on MII.

(1) (3) (4)(2)

CLKT
TX_EN

TRADDR[9:0]
TRDATA[15:0]

TXD[3:0]

000 001 002 003 004
0000 0004 0000 0008
5 D 0 4 0

t0 t1

Figure 38 Transmit on MII with 16-Bit Transmit Data RAM

Transmit on MII with 8-Bit Transmit Data RAM
(1), (2) Core10100 sends out requested read addresses. t0 is two cycles.
(3), (4) t1 is the time between Core10100 sending out a read address request and the appearance of the
requested data on MII.

CLKT

TRADDR[10:0]

TRDATA[7:0]

TX_EN

TXD[3:0]

001 002 003 004 005 006

00 04

5 D 0 4

(1) (2) (4)(3)
t0 t1

Figure 39 Transmit on MII with 8-Bit Transmit Data RAM

68 Core10100 v5.1 Handbook

Transmit Descriptor and Data Fetches

Receive Dataflow Overview
Core10100 receives Ethernet data from the MII interface, and the Receive Controller writes the received
data into the Receive Data RAM. The RFIFO Controller for Core10100 starts to transfer received data
from the Receive Data RAM to the shared memory via the DMA unit when the data in the Receive Data
RAM exceeds 64 bytes. Figure 40 illustrates the received data travelling through different Core10100
interfaces. A typical receive consists of the following steps (as shown in Figure 40):

1. Core10100 starts to receive the preamble and SFD.
2. Core10100 starts to write the receive data to the Receive Data RAM.
3. Core10100 writes the 64th byte of the received data to the receive FIFO.
4. Core10100 starts to transfer received data from the Received Data RAM to the shared RAM.

RX_DV
RXD[3:0]

RWE
RWADDR[8:0]
RRADDR[8:0]

DATAREQ
DATAACK

DATAADDR[31:0]

0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1) (2) (3)
(4)

Figure 40 A Typical Receive Example

Core10100 Receives and Writes Receive Data RAM

Core10100 Receives and Writes 32-Bit Receive Data RAM
1. Core10100 starts to receive the preamble.
2. Core10100 starts to receive the packet.
3. Core10100 starts to write the first 32-bit word into the receive FIFO.
4. Core10100 starts to write the second 32-bit word into the receive FIFO.
Note: t0 = 16 × CLKR period, t1 = 8 × CLKR period.

CLKR
RPS

RX_DV
RXD[3:0]

RWE
RWADDR[8:0]

0 5 1 2

000 001 002

(1) (3)(2) (4)

t0 t1

Figure 41 Core10100 Receives and Writes Receive Data RAM

Core10100 v5.1 Handbook 69

Transmit and Receive Functional Timing Examples

Core10100 Receives and Writes 16-Bit Receive Data RAM
1. Core10100 starts to receive the preamble.
2. Core10100 starts to receive the packet.
3. Core10100 starts to write the first 16-bit word into the receive FIFO.
4. Core10100 starts to write the second 16-bit word into the receive FIFO.
Note: t0 = 16 × CLKR period, t1 = 4 × CLKR period.

CLKR
RX_DV

RWE
RXD[3:0]

RWADDR[9:0]
RWDATA[15:0]

0 5 0 1 2 3 4 5 6 7 8 9
000 001 002
FFF0 FFF5

(1) (2) (3) (4)
t0 t1

Figure 42 Core10100 Receives and Writes 16-Bit Receive Data RAM

Core10100 Receives and Writes 8-Bit Receive Data RAM
1. Core10100 starts to receive the preamble.
2. Core10100 starts to receive the packet.
3. Core10100 starts to write the first 8-bit word into the receive FIFO.
4. Core10100 starts to write the second 8-bit word into the receive FIFO.
Note: t0 = 16 × CLKR period, t1 = 2 × CLKR period.

CLKR
RX_DV

RWE

RXD[3:0]

RWADDR[10:0]
RWDATA[7:0]

(1) (2) (3)
(4)

t0 t1

0 5
000
F0 F5

0 1 2 3 4 5 6 7 8

Figure 43 Core10100 Receives and Writes 8-Bit Receive Data RAM

70 Core10100 v5.1 Handbook

Transmit Descriptor and Data Fetches

Transfer Receive Data to Shared Memory

32-Bit Word Transfer from Receive Data RAM to Shared Memory
1. Core10100 writes the 64th byte of the frame into the Receive Data RAM.
2. Core10100 starts to send the data request to transfer received data into the shared memory.
3. The first 32-bit word is written into the shared memory via the data interface.
4. The 64th byte of the frame is written into the shared memory.
Note: t0 = 6 × CLKDMA period.

(1) (2)
(3)

(4)
t0

CLKDMA
CLKR
RWE

RWADDR[8:0]
RRADDR[8:0]

RRDATA[31:0]
DATAACK
DATAREQ

DATAADDR[31:0]
DATAO[31:0]

00E 00F 010
000
76543210

00001014
76543210

01

Figure 44 32-Bit Word Transfer From Receive Data RAM to Shared Memory

16-Bit Word Transfer from Receive Data RAM to Shared Memory
1. Core10100 writes the 64th byte of the frame into the Receive Data RAM.
2. Core10100 starts to send the data request to transfer received data into the shared memory.
3. The first 32-bit word is written into the shared memory via the data interface.
4. The 64th byte of the frame is written into the shared memory.

CLKDMA

CLKR

RWE

RRADDR[9:0]

RWADDR[9:0]

RRDATA[15:0]

DATAACK

DATAREQ

DATARW

DATAADDR[31:0]

DATAO[15:0]

(1) (2)

(3)

000 00

03F 040 041 042

0000

00001014

0000

Figure 45 16-Bit Word Transfer from Receive Data RAM to Shared Memory

Core10100 v5.1 Handbook 71

Transmit and Receive Functional Timing Examples

8-Bit Word Transfer from Receive Data RAM to Shared Memory

CLKDMA

CLKR

RWE

RWADDR[10:0]

RRADDR[10:0]

RRDATA[7:0]

DATAACK

DATAREQ

DATAADDR[31:0]

DATAO[7:0]

(1) (2) (3)

03E 03F 040 041 042 043 044 0

000

00

00001014

00

Figure 46 8-Bit Word Transfer from Receive Data RAM to Shared Memory

Core10100 Receive Descriptor Fetch
The receive descriptor fetch timing is essentially the same as the transmit descriptor fetch timing. In
reality, transmit descriptor fetches and receive descriptor fetches can happen mixed or alternately
through the DMA interface. Refer to Figure 32, Figure 33, and Figure 34.

72 Core10100 v5.1 Handbook

List of Changes

The following table lists critical changes that were made in the current version of the document.

Date Changes Page

September 2014 Updated the Handbook. Now this handbook contains the information only about Core10100
v5.1.

N/A

In this Core10100 v5.1 handbook, data interface timing diagrams that show the assertion of
DATAACK in the clock cycle after DATAREQ is asserted are incorrect. The minimum delay
between the assertion of DATAREQ and the assertion of DATAACK is two clock cycles. Refer
to user testbench simulation waveforms for correct data interface timing (SAR 60235).

N/A

Core10100 v5.1 Handbook 73

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Microsemi SoC Products Group and using these support
services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 650. 318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers
who can help answer your hardware, software, and design questions about Microsemi SoC Products. The
Customer Technical Support Center spends a great deal of time creating application notes, answers to
common design cycle questions, documentation of known issues and various FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support
Visit the Microsemi SoC Products Group Customer Support website for more information and support
(http://www.microsemi.com/soc/support/search/default.aspx). Many answers available on the searchable
web resource include diagrams, illustrations, and links to other resources on website.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group
home page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted
by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We
constantly monitor the email account throughout the day. When sending your request to us, please be sure
to include your full name, company name, and your contact information for efficient processing of your
request.
The technical support email address is soc_tech@microsemi.com.

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Core10100 v5.1 Handbook 75

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
http://www.microsemi.com/soc/
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/

Product Support

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

76 Core10100 v5.1 Handbook

mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx%23itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/mycases/
http://www.microsemi.com/soc/ITAR/

50200077-1/9.14

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1(949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices, and precise time solutions, setting the world's standard for time;
voice processing devices; RF solutions; discrete components; security technologies and
scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom
design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com/

	Introduction
	Supported Device Families
	Core Versions
	Supported Interface
	Device Utilization and Performance
	Memory Requirements
	IGLOO/e, ProASIC3/E, ProASIC3L, Fusion, Axcelerator, and RTAX-S
	ProASICPLUS
	SmartFusion2, IGLOO2

	Functional Block Descriptions
	CSR – Control/Status Register Logic
	DMA – Direct Memory Access Controller
	TLSM – Transmit Linked List State Machine
	TFIFO – Transmit FIFO
	TC – Transmit Controller
	BD – Backoff/Deferring
	RLSM – Receive Linked List State Machine
	RFIFO – Receive FIFO
	RC – Receive Controller
	RSTC – Reset Controller
	Memory Blocks
	RMII – RMII to MII Interface

	Interface Descriptions
	Parameters on Core10100
	CSR Interface Signals
	Other Interface Signals

	Software Interface
	Register Maps
	Control and Status Register Addressing
	CSR Definitions

	Frame Data and Descriptors
	Descriptor / Data Buffer Architecture Overview
	MAC Address and Setup Frames

	Internal Operation
	DMA Controller
	Transmit Process
	Receive Process
	Interrupt Controller
	General-Purpose Timer
	Data Link Layer Operation
	MII Interface
	MII Interface Signals
	MII Receive Operation
	MII Transmit Operation
	Frame Format

	Collision Handling
	Deferring
	Receive Address Filtering

	Steps for Calculating CRC with Hash Filtering
	External Address Filtering Interface
	MII to RMII Interface

	Interface Timing
	Core10100—CSR Interface
	CSR Read/Write Operation

	Core10100—Data Interface
	Data Interface Write Operation
	Data Interface Read Operation

	Core10100-RMII Interface
	Clock and Reset Control
	Clock Controls
	Reset Control
	Hardware Reset
	Software Reset

	Timing Constraints

	Tool Flows
	Licensing
	Obfuscated
	RTL

	SmartDesign
	Configuring Core10100 in SmartDesign

	Testbench Operation and Modification
	Testbench operation and modification

	System Operation
	Transmit and Receive Functional Timing Examples
	Transmit Examples
	Transmit Overview
	Core10100 Enters Transmit Process
	Core10100 Starts to Request Transmit Descriptors

	Transmit Descriptor and Data Fetches
	Transmit Descriptor Fetch in 32-Bit Mode
	Transmit Descriptor and Data Fetch in 16-Bit Mode
	Transmit Descriptor and Data Fetch in 8-Bit Mode
	Core10100 Starts to Transmit on MII
	Transmit on MII
	Transmit on MII with 32-Bit Transmit Data RAM
	Transmit on MII with 16-Bit Transmit Data RAM
	Transmit on MII with 8-Bit Transmit Data RAM

	Receive Dataflow Overview
	Core10100 Receives and Writes Receive Data RAM
	Core10100 Receives and Writes 32-Bit Receive Data RAM
	Core10100 Receives and Writes 16-Bit Receive Data RAM
	Core10100 Receives and Writes 8-Bit Receive Data RAM

	Transfer Receive Data to Shared Memory
	32-Bit Word Transfer from Receive Data RAM to Shared Memory
	16-Bit Word Transfer from Receive Data RAM to Shared Memory
	8-Bit Word Transfer from Receive Data RAM to Shared Memory

	Core10100 Receive Descriptor Fetch

	List of Document Changes
	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

